А1. Дано: ABCD-трапеция ВС=8 см AD=14 см Найти среднюю линию? Решение: Построим отрезок MN-средняя линия трапеции MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см. ответ: 11 см.
А2. Дано: ABCD-трапеция Прямая a || CD ∠ABE = 75°, ∠A = 40°. Чему равен ∠CBE=? Решение: По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°. Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы. ответ: ∠CBE=65°
Сторона правильного n-угольника через радиус описанной окружности:
a(n) = 2R·sin(180°/n)
1. a₃ = 2R · sin(180° / 3) = 2R · sin60° = 2R√3/2 = R√3
R = a₃ / √3 = 9 / √3 = 3√3 см
С = 2πR = 2π · 3√3 = 6π√3 см
2. a₄ = 2R · sin(180°/4) = 2R · sin45° = 2R · √2/2 = R√2
R = a₄ / √2 = 10 / √2 = 5√2 см
S = πR² = 50π см²
3. Центральный угол правильного восьмиугольника:
α = 360° / 8 = 45°
Центральный угол, соответствующий дуге АВС, состоит из двух центральных углов, поэтому ∠АОВ = 45° · 2 = 90°.
Длина дуги: l = 2πR · α / 360°
l = 2π · 6 · 90° / 360° = 3π см
4. Площадь кругового сектора, соответствующего центральному углу 90°, равна 12 см². Найдите площадь круга.
Такой сектор - это четверть круга. Значит площадь круга в 4 раза больше:
S = 12 · 4 = 48 см²
Дано:
ABCD-трапеция
ВС=8 см
AD=14 см
Найти среднюю линию?
Решение:
Построим отрезок MN-средняя линия трапеции
MN=(BC+AD) /2= (8+14)/2= 22/2= 11 см.
ответ: 11 см.
А2.
Дано:
ABCD-трапеция
Прямая a || CD
∠ABE = 75°, ∠A = 40°.
Чему равен ∠CBE=?
Решение:
По условию задачи прямая a || CD и проходит основания в точках В и Е => получили треугольник АВЕ, где ∠ABE = 75°, ∠A = 40°. Вычислим ∠AЕВ = 180°-(75°+40°)=180°-115°=65°.
Так как ВС || AD и прямая a пересекает их, то прямая а - секущая => ∠AЕВ =∠CBE=65° - внутренние накрест лежащие углы.
ответ: ∠CBE=65°