Прямые ВС и АD параллельны, так как сумма внутренних односторонних углов А и В при прямых ВС и АВ и секущей АВ в сумме равны 180° (признак параллельности). Четырехугольник АВСD - параллелограмм, следовательно его диагонали в точке пересечения делятся пополам. ВМ=ОD и ВМ=КD, а <OBM=<ODK как накрест лежащие при параллельных прямых. Значит треугольники ОВМ и ОDK равны по двум сторонам и углу между ними. В равных треугольниках против равных углов лежат равные стороны. ОМ=ОD, что и требовалось доказать.
Четырехугольник АВСD - параллелограмм, следовательно его диагонали в точке пересечения делятся пополам.
ВМ=ОD и ВМ=КD, а <OBM=<ODK как накрест лежащие при параллельных прямых. Значит треугольники ОВМ и ОDK равны по двум сторонам и углу между ними. В равных треугольниках против равных углов лежат равные стороны.
ОМ=ОD, что и требовалось доказать.
Объяснение:
83.
Дано: ∠MDE;
DP ⊥ LF; PL = PF.
Доказать: ∠LDP = ∠FDP.
Доказательство:
Рассмотрим ΔDLP и ΔDPF - прямоугольные (DP ⊥ LF).
PL = PF (условие)
DP - общая.
⇒ ΔDLP = ΔDPF (по двум катетам)
В равных треугольниках против равных сторон лежат равные углы.⇒ ∠LDP = ∠FDP.
84.
Дано: ΔDEF;
EK ⊥ DF; DK = FK;
Доказать: ED = EF.
Доказательство:
Рассмотрим ΔKDE и ΔKEF - прямоугольные (EK ⊥ DF) .
DK = FK (условие)
КЕ - общая.
⇒ ΔKDE = ΔKEF (по двум катетам)
В равных треугольниках против равных углов лежат равные стороны.⇒ ED = EF.
85.
Дано: прямая а;
∠DAB = ∠EAB; ∠DBA = ABE;
Доказать: ΔBAD = ΔBAE.
Доказательство:
Рассмотрим ΔBAD и ΔBAE.
∠DAB = ∠EAB; ∠DBA = ABE (по условию)
АВ - общая.
⇒ ΔBAD и ΔBAE (по стороне и двум прилежащим углам. 2 признак)