Случай 1. Пусть данный треугольник называется АВС с высотой ВН=36см.. Тогда АВ=85, а ВС=60 тогда для нахождения площади треугольника АВС найдем 3и стороны треугольников АВН и НВС по теореме Пифагора. AH=√85²-36²=√7225-1296=√5929=77 S(AHВ)=(77*36)/2=1386см² HC=√60²-36²=√3600-1296=√2304=48 S(HCB)=(48*36)/2=864см² следовательно S(ABC)=S(AHB)+S(HCB)=1386см²+864см²=2250см². Случай 2 найдем S(АВС) используя данную высоту и сумму катетов треугольников AHB и HBC которые дадут нам длину основания треугольника ABC найдем S(ABC). AH=√85²-36²=√7225-1296=√5929=77см HC=√60²-36²=√3600-1296=√2304=48см ⇒ AC=AH+HC=48+77=125см. S(ABC)=(AH*AC)/2=(125*36)/2=2250см²
Случай 2 найдем S(АВС) используя данную высоту и сумму катетов треугольников AHB и HBC которые дадут нам длину основания треугольника ABC найдем S(ABC). AH=√85²-36²=√7225-1296=√5929=77см HC=√60²-36²=√3600-1296=√2304=48см ⇒ AC=AH+HC=48+77=125см. S(ABC)=(AH*AC)/2=(125*36)/2=2250см²
Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².