АВ=ВС ⇒ ∠ВАС=∠ВСА, АД и СЕ - биссектрисы. Треугольники АДС и АЕС равны т.к. ∠ЕАС=∠ДСА, ∠ЕСА=∠ДАС и сторона АС общая, значит АЕ=ДС, значит ЕД║АС, значит АЕДС - трапеция. Биссектриса трапеции отсекает от противолежащего основания отрезок, равный прилежащей боковой стороне (свойство). Так как биссектриса АД одновременно диагональ, то АЕ=ЕД. Доказано.
Можно доказать и свойство. ∠ЕДА=∠ДАС как накрест лежащие, ∠ДАС=∠ДАЕ как углы биссектрисы, значит ∠ЕДА=∠ДАС, следовательно треугольник АЕД - равнобедренный. В нём АЕ=ЕД.
ответ В 56 см точку пересечения диагоналей обозначим как О, от неё высоту к АВ- получим НО смотрим треугольник НОВ, у него угол ОНВ прямой, ВН=ВА/2=12/2=6 (Точка пересечения диагоналей называется центром прямоугольника т.к. высота из центра прямоугольника то она делит сторону пополам, ) по теореме пифагора находим ВО ВО²=НО²+ВН² ВО²=8²+6² ВО²=64+36 ВО²=100 ВО=10
из точки О проводим высоту к прямой ВС, получаем ОК смотрим прямоугольник НВКО, в нём КО=ВН (как противоположные стороны прямоугольника)=6
смотрим прямоугольный треугольник КВО, по теореме Пифагора находим ВК (всё те же числа поэтому сразу ответ)=8 так как высота ОК проведена к ВС из центра прямоугольника то ВК=КС=8см значит ВС=8+8=16
Треугольники АДС и АЕС равны т.к. ∠ЕАС=∠ДСА, ∠ЕСА=∠ДАС и сторона АС общая, значит АЕ=ДС, значит ЕД║АС, значит АЕДС - трапеция.
Биссектриса трапеции отсекает от противолежащего основания отрезок, равный прилежащей боковой стороне (свойство). Так как биссектриса АД одновременно диагональ, то АЕ=ЕД.
Доказано.
Можно доказать и свойство.
∠ЕДА=∠ДАС как накрест лежащие, ∠ДАС=∠ДАЕ как углы биссектрисы, значит ∠ЕДА=∠ДАС, следовательно треугольник АЕД - равнобедренный. В нём АЕ=ЕД.
точку пересечения диагоналей обозначим как О, от неё высоту к АВ- получим НО
смотрим треугольник НОВ, у него угол ОНВ прямой, ВН=ВА/2=12/2=6 (Точка пересечения диагоналей называется центром прямоугольника
т.к. высота из центра прямоугольника то она делит сторону пополам, )
по теореме пифагора находим ВО
ВО²=НО²+ВН²
ВО²=8²+6²
ВО²=64+36
ВО²=100
ВО=10
из точки О проводим высоту к прямой ВС, получаем ОК
смотрим прямоугольник НВКО, в нём КО=ВН (как противоположные стороны прямоугольника)=6
смотрим прямоугольный треугольник КВО, по теореме Пифагора находим ВК (всё те же числа поэтому сразу ответ)=8
так как высота ОК проведена к ВС из центра прямоугольника то ВК=КС=8см
значит ВС=8+8=16
находим периметр прямоугольника АВСD=(16+12)2=28*2=56