3.Высота из вершины малого основания в равнобедренной трапеции делит большое основание на отрезки, меньший из которых равен полуразности оснований(то есть (a - b)/2, где а и b - большое и малое основания)откуда больший равен полусумме оснований(потому что а - (a - b)/2 = (a + b)/2)То есть больший отрезок равен средней линии. треугольник, образованный этим отрезком, высотой и диагональю - это прямоугольный треугольник с углом 45 градусов (так задано).То есть он равнобедренный.То есть средняя линяя равна высоте. цифры тогда сами подставите)
1). Опускаем высоты из вершин малого основания на большое. Легко видеть, что прямоугольные треугольники имеют углы по 45 градусов, то есть равнобедренные. Поэтому высота трапеции равна (7 - 3)/2 = 2, а площадь 2*(7 + 3)/2 = 10.
2). Диагонали ромба делят его на 4 равных прямоугольных треугольника с гипотенузой 13 и одним из катетов 10/2 = 5. Отсюда второй катет 12, диагональ 24, а площадь равна половине произведения диагоналей, то есть 10*24/2 = 120.
3). Считаем трапецию равнобедренной. Тогда сумма оснований равна сумме боковых сторон, то есть средняя линяя равна боковой стороне. Обозначим её m, а высоту h. Имеем h = m*sin(30) = m/2; S = m*h = m^2/2; m^2 = 2*S = 625; m = 25;
4) 0,21^2 = 0,0441; (можно и так (21/100)^2 = 441/10000 = 0,0441)
1). Опускаем высоты из вершин малого основания на большое. Легко видеть, что прямоугольные треугольники имеют углы по 45 градусов, то есть равнобедренные. Поэтому высота трапеции равна (7 - 3)/2 = 2, а площадь 2*(7 + 3)/2 = 10.
2). Диагонали ромба делят его на 4 равных прямоугольных треугольника с гипотенузой 13 и одним из катетов 10/2 = 5. Отсюда второй катет 12, диагональ 24, а площадь равна половине произведения диагоналей, то есть 10*24/2 = 120.
3). Считаем трапецию равнобедренной. Тогда сумма оснований равна сумме боковых сторон, то есть средняя линяя равна боковой стороне. Обозначим её m, а высоту h. Имеем h = m*sin(30) = m/2; S = m*h = m^2/2; m^2 = 2*S = 625; m = 25;
4) 0,21^2 = 0,0441; (можно и так (21/100)^2 = 441/10000 = 0,0441)