ответ:Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника. Определение. ... Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: . Найдём теперь тангенс угла, пользуясь формулой: . ответ: . На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов. Список литературы. Александров А.Д. и др.
l - длина дуги,
С - длина окружности,
S - площадь круга,
1.
С = 2πR, ⇒ R = C / (2π)
S = πR² = π · C² / (2π)² = C² / (4π)
2.
Площадь кольца можно найти отняв от площади большего круга площадь меньшего.
Sб = π·25²
Sм = π· 24²
Sкольца = Sб - Sм = π · 25² - π · 24² = π(25² - 24²) = π(25 - 24)(25 + 24)
Sкольца = π · 49 = 49π см²
3.
Sсект = πR² · α / 360°
Sсект = π · 9 · 20° / 360° = π/2 см²
4.
Sсект = πR² · α / 360°
10π = π · 36 · α / 360°
α = 10π · 360° / (36π) = 100°
5.
l = 2πR · α / 360°
l = 2π · 6 · 120° / 360° = 4π дм
6.
l = 2πR · α / 360°
6π = 2πR · 60° / 360°
6 = R / 3
R = 6 · 3 = 18
ответ:Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника. Определение. ... Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: . Найдём теперь тангенс угла, пользуясь формулой: . ответ: . На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов. Список литературы. Александров А.Д. и др.
Объяснение: