Дано четырехугольник ABCD с вершинами в точках A (1 , - 5) , B (2 , 3) , C (- 3 , 1) , D (- 4 , - 7) и нам нужно доказать , что это четырехугольник является параллелограммом .
Мы доказываем с свойству четырехугольника . Знаем , если координаты середин отрезков AC и BD совпадают , то это четырехугольник ABCD является параллелограммом .
Найдём середин отрезков AC и BD :
а) A (1 , - 5) ; C (- 3 , 1) :
x = (1 - 3)/2 = - 1 ; y = (- 5 + 1)/2 = - 2 .
б) B (2 , 3) и D (- 4 , - 7) :
x = (2 - 4)/2 = - 1 ; y = (3 - 7)/2 = - 2 .
Видно координаты середин одинаковы , значит , четырехугольник ABCD является параллелограммом .
ответ : Четырехугольник ABCD является параллелограммом .
Дано четырехугольник ABCD с вершинами в точках A (1 , - 5) , B (2 , 3) , C (- 3 , 1) , D (- 4 , - 7) и нам нужно доказать , что это четырехугольник является параллелограммом .
Мы доказываем с свойству четырехугольника . Знаем , если координаты середин отрезков AC и BD совпадают , то это четырехугольник ABCD является параллелограммом .
Найдём середин отрезков AC и BD :
а) A (1 , - 5) ; C (- 3 , 1) :
x = (1 - 3)/2 = - 1 ; y = (- 5 + 1)/2 = - 2 .
б) B (2 , 3) и D (- 4 , - 7) :
x = (2 - 4)/2 = - 1 ; y = (3 - 7)/2 = - 2 .
Видно координаты середин одинаковы , значит , четырехугольник ABCD является параллелограммом .
ответ : Четырехугольник ABCD является параллелограммом .
Объяснение:
Дано: ABCD - параллелограмм;
РК║АС
Доказать: РМ=NK
Доказательство:
1) Рассмотрим АМКС.
АМ║СК (ABCD - параллелограмм)
МК║АС (условие)
⇒ АМКС - параллелограмм (по определению)
⇒ АМ=СК (свойство параллелограмма)
2) Рассмотрим PNCA.
АP║СN (ABCD - параллелограмм)
PN║AC (условие)
⇒ PNCA- параллелограмм (по определению)
⇒ АP=СN (свойство параллелограмма)
3) Рассмотрим ΔРМА и ΔNKC
АМ=СК (п.1)
АP=СN (п.2)
∠1=∠2 - соответственные при BC║AD и секущей DK
∠3=∠2 - соответственные при AB║DK и секущей DP
⇒ ∠1=∠3
⇒ ΔРМА = ΔNKC (по двум сторонам и углу между ними)
⇒ PM=NK