График линейной функции - прямая. Угловой коэффициент меньше нуля, поэтому функция убывает. Переменная х - аргумент, а переменная у - зависимая от значения аргумента.
Подберём значения аргумента, а затем и зависимой переменной у, а затем построим график линейной функции.
если х=2, то у=-(2-3)=-(-1)=1если х=3, то у=-(3-3)=-(0)=0
ответ: см во вложении график.
б) Найти значение x при у=-2.
Подставим в линейную функцию значение у и решим полученное уравнение.
Найдем радиус вписанной окружности по формуле r=√mn, где m и n - длины отрезков, на которые точка касания делит большую сторону. r=√3*12=√36=6 см. Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см. Меньшая боковая сторона = h = 12 см. Сумма боковых сторон = 12+3+12=27 см. Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см. Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту. S=27:2*12=162 см². ответ: 162 см².
График линейной функции - прямая. Угловой коэффициент меньше нуля, поэтому функция убывает. Переменная х - аргумент, а переменная у - зависимая от значения аргумента.
Подберём значения аргумента, а затем и зависимой переменной у, а затем построим график линейной функции.
если х=2, то у=-(2-3)=-(-1)=1если х=3, то у=-(3-3)=-(0)=0ответ: см во вложении график.
б) Найти значение x при у=-2.Подставим в линейную функцию значение у и решим полученное уравнение.
-2=-x+3 => x=2+3 => x=5
Проверка: -2=-5+3 => -2=-(5-3) => -2=-2.
ответ: при х=5 значение у=-2.
r=√3*12=√36=6 см.
Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см.
Меньшая боковая сторона = h = 12 см.
Сумма боковых сторон = 12+3+12=27 см.
Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см.
Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту.
S=27:2*12=162 см².
ответ: 162 см².