В равнобедренном треугольнике равны не только боковые стороны, но и прилежащие к основанию углы. Рассмотрим на треугольнике MFE, где MF=FE. Опустим высоту FH. Треугольник MFH=EFH (они оба прямоугольные, FH-общая, MF=EF по условию.). Значит угол М равен углу Е. Т.е. в равнобедренном треугольнике углы при основании равны.
Начертим треугольник ABC. Пусть равными высотами будут высоты AA1 и CC1. Треугольники ACC1 и CAA1 прямоугольные и имеют равные катеты (AA1 = CC1) и общую гипотенузу (AC), значит они равны по катету и гипотенузе. Т.к. треугольники ACC1 и CAA1 равны, углы A и C равны., значит АВ=СВ, следовательно треугольник равнобедренный.
Объяснение:
У рівнобедреному трикутнику рівні не тільки бічні сторони, але і прилеглі до основи кути. Розглянемо на трикутнику MFE, де MF=FE. Опустимо висоту FH. Трикутник MFH=EFH (вони обидва прямокутні, FH-загальна, MF=EF за умовою.). Значить кут м дорівнює кутку Е. тобто в рівнобедреному трикутнику кути при підставі рівні.
Накреслимо трикутник ABC. Нехай рівними висотами будуть висоти AA1 і CC1. Трикутники ACC1 і CAA1 прямокутні і мають рівні катети (AA1 = CC1) і загальну гіпотенузу (AC), значить вони рівні по катету і гіпотенузі. Оскільки трикутники ACC1 і CAA1 рівні, кути A і C рівні., значить АВ=СВ, отже трикутник рівнобедрений.
S основания цилиндра = πR²
R=6, т.к. диаметр окружности равен стороне квадрата равной 12
S=6²π=36π
ответ: площадь основания цилиндра равна 36π
S боковой поверхности цилиндра = 2πRh
уже известно что R=6
высота равна стороне квадрата, т.е. h=12
S=2*12*6π=144π
ответ: площадь боковой поверхности цилиндра равна 144π
S всей поверхности цилиндра = 2Sосн+Sбок
зная что Sосн=36π, а Sбок=144π, получаем:
S=2*36π+144π=72π+144π=216π
ответ: площадь всей поверхности цилиндра равна 216π
V цилиндра = πR²h
R=6, h=12 →
V=36*12π=432π
ответ: обьем цилиндра равен 432π
В равнобедренном треугольнике равны не только боковые стороны, но и прилежащие к основанию углы. Рассмотрим на треугольнике MFE, где MF=FE. Опустим высоту FH. Треугольник MFH=EFH (они оба прямоугольные, FH-общая, MF=EF по условию.). Значит угол М равен углу Е. Т.е. в равнобедренном треугольнике углы при основании равны.
Начертим треугольник ABC. Пусть равными высотами будут высоты AA1 и CC1. Треугольники ACC1 и CAA1 прямоугольные и имеют равные катеты (AA1 = CC1) и общую гипотенузу (AC), значит они равны по катету и гипотенузе. Т.к. треугольники ACC1 и CAA1 равны, углы A и C равны., значит АВ=СВ, следовательно треугольник равнобедренный.
Объяснение:
У рівнобедреному трикутнику рівні не тільки бічні сторони, але і прилеглі до основи кути. Розглянемо на трикутнику MFE, де MF=FE. Опустимо висоту FH. Трикутник MFH=EFH (вони обидва прямокутні, FH-загальна, MF=EF за умовою.). Значить кут м дорівнює кутку Е. тобто в рівнобедреному трикутнику кути при підставі рівні.
Накреслимо трикутник ABC. Нехай рівними висотами будуть висоти AA1 і CC1. Трикутники ACC1 і CAA1 прямокутні і мають рівні катети (AA1 = CC1) і загальну гіпотенузу (AC), значить вони рівні по катету і гіпотенузі. Оскільки трикутники ACC1 і CAA1 рівні, кути A і C рівні., значить АВ=СВ, отже трикутник рівнобедрений.
ЗЫ Надеюсь правильный перевод))