Скорость течения реки (y m/c) в зависимости от глубины реки (x m) выражена формулой y=-x2+8x-12. Найдите наибольшую глубину реки где скорость течения равна
1) Пусть АС=х. По условию задачи, тр. АВС-равнобедренный,то боковые стороны равны: АВ=ВС. Также по условию АВ=2АС (но АС=х),следовательно АВ=ВС=2х. Периметр-сумма длинн всех сторон треугольника АВС( Р=АВ+ВС+АС), получаем уравнение Р=2х+2х+х, но по условию Р=20,тогда имеем: 20=2х+2х+х 20=5х 5х=20 х=20/5 х=4. За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8. ответ(1): 4,8,8. 2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным. ответ(2):равнобедренный
Обозначения. Треугольник ABC AC = 10; BC = 24; AB = 26; О - точка пересечения медиан, M - середина AB; N - середина AC; K - середина BC; Прежде, чем решать, я найду длины медиан и площадь треугольника. Площадь S = 10*24/2 = 120; AK^2 = 10^2 + 12^2 = 244; AK = 2√61; BN^2 = 5^2 + 24^2 = 601; BN = √601; CK = AB/2 = 13; Теперь решение. Расстояния от точки O до вершин равно 2/3 медиан. AO = AK*2/3 = 4√61/3; BO = BN*2/3 = 2√601/3; CO = CM*2/3 = 26/3; Расстояние от O до катетов очевидно равно 1/3 другого катета. Это видно из проекций точек M и O на катеты (M проектируется в середину катета, а проекция CO равна 2/3 проекции CM); но для систематического решения лучше рассуждать так. Площади треугольников BOC; BOA; AOC равны S/3 = 40; поэтому искомые расстояния от точки O до сторон равны (S/3)*2/(сторона); до AC: ... = 40*2/10 = 8; до BC: ... = 40*2/24 = 10/3; до AB: ... = 40*2/26 = 40/13; таким находятся все три расстояния
20=2х+2х+х
20=5х
5х=20
х=20/5
х=4.
За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8.
ответ(1): 4,8,8.
2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным.
ответ(2):равнобедренный
Треугольник ABC AC = 10; BC = 24; AB = 26;
О - точка пересечения медиан, M - середина AB; N - середина AC; K - середина BC;
Прежде, чем решать, я найду длины медиан и площадь треугольника.
Площадь S = 10*24/2 = 120;
AK^2 = 10^2 + 12^2 = 244; AK = 2√61;
BN^2 = 5^2 + 24^2 = 601; BN = √601;
CK = AB/2 = 13;
Теперь решение.
Расстояния от точки O до вершин равно 2/3 медиан.
AO = AK*2/3 = 4√61/3; BO = BN*2/3 = 2√601/3; CO = CM*2/3 = 26/3;
Расстояние от O до катетов очевидно равно 1/3 другого катета. Это видно из проекций точек M и O на катеты (M проектируется в середину катета, а проекция CO равна 2/3 проекции CM);
но для систематического решения лучше рассуждать так.
Площади треугольников BOC; BOA; AOC равны S/3 = 40;
поэтому искомые расстояния от точки O до сторон равны (S/3)*2/(сторона);
до AC: ... = 40*2/10 = 8; до BC: ... = 40*2/24 = 10/3; до AB: ... = 40*2/26 = 40/13;
таким находятся все три расстояния