См 7. Параллелограммның диагональдарының қиылысу нүктесінен ұзындығы 2 болатын кесінді, ұзындығы 5 см болатын қабырғасын қақ бөледі. Параллелограммның периметрін табыңыз.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Теорема. Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Доказательство.
Проведем высоты ВН и СЕ. Докажем, что S(ABCD) = AD · BH.
ΔАВН = Δ DCE - они прямоугольные и равны по гипотенузе (АВ = СD как противоположные стороны параллелограмма) и катету (ВН = СЕ как перпендикуляры, проведенные от одной из параллельных прямых к другой). Значит, равны и их площади (есть аксиома площади: равные фигуры имеют равные площади), т.е. S(ABH) = S(DCE).
Заметим, что S(ABCD) =S(ABCЕ) - S(DСЕ),
а также S(НBCЕ) = S(ABCЕ) - S(ABН).
Откуда следует, что S(ABCD) = S(НBCЕ) , т.к. выше доказано, что S(ABH) = S(DCE). Но НВСЕ - прямоугольник, а площадь прямоугольника равна произведению двух его сторон (доказывается ранее при изучениии темы "Площпди многоугольников"), т.е. S(НBCЕ) =AD · BH.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Теорема. Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Доказательство.
Проведем высоты ВН и СЕ. Докажем, что S(ABCD) = AD · BH.
ΔАВН = Δ DCE - они прямоугольные и равны по гипотенузе (АВ = СD как противоположные стороны параллелограмма) и катету (ВН = СЕ как перпендикуляры, проведенные от одной из параллельных прямых к другой). Значит, равны и их площади (есть аксиома площади: равные фигуры имеют равные площади), т.е. S(ABH) = S(DCE).
Заметим, что S(ABCD) =S(ABCЕ) - S(DСЕ),
а также S(НBCЕ) = S(ABCЕ) - S(ABН).
Откуда следует, что S(ABCD) = S(НBCЕ) , т.к. выше доказано, что S(ABH) = S(DCE). Но НВСЕ - прямоугольник, а площадь прямоугольника равна произведению двух его сторон (доказывается ранее при изучениии темы "Площпди многоугольников"), т.е. S(НBCЕ) =AD · BH.
Следовательно, и S(ABCD) = AD · BH.
Теорема доказана.