При пересечении двух параллельных прямых третьей (не под прямым углом) образуются 8 углов, четыре из которых имеют одну величину и четыре - другую:
На рисунке видны такие углы 1 и 3; 2 и 4, а так же 5 и 7; 6 и 8. Очевидно, что все эти пары представляют собой равные углы, так как являются вертикальными. Таким образом, мы имеем четыре бо'льших угла: 1, 3, 5, 7 и четыре меньших: 2, 4, 6, 8. Разность между бо'льшим и меньшим углом, по условию, равна 44°. Сумма большего и меньшего равна 180°. Тогда:
№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5
При пересечении двух параллельных прямых третьей (не под прямым углом) образуются 8 углов, четыре из которых имеют одну величину и четыре - другую:
На рисунке видны такие углы 1 и 3; 2 и 4, а так же 5 и 7; 6 и 8. Очевидно, что все эти пары представляют собой равные углы, так как являются вертикальными. Таким образом, мы имеем четыре бо'льших угла: 1, 3, 5, 7 и четыре меньших: 2, 4, 6, 8. Разность между бо'льшим и меньшим углом, по условию, равна 44°. Сумма большего и меньшего равна 180°. Тогда:
{ ∠1 - ∠2 = 44°
{ ∠1 + ∠2 = 180° - Складываем оба уравнения:
2 *∠1 = 224° => ∠1 = 112°; ∠2 = 180 - 112 = 68°
Таким образом: ∠1 = ∠3 = ∠5 = ∠7 = 112°
∠2 = ∠4 = ∠6 = ∠8 = 68°
№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5