Через середины сторон равностороннего треугольника можно провсти только одну окружность - вписанную в этот треугольник. Для того чтобы найти ее радиус надо решить прямоугольный треугольник малым катетом которого является искомый радиус OD, большим катетом AD является половина стороны равностороннего треугольника 8√3/2 = 4√3, гипотенузой - отрезок AO от вершины равностороннего треугольника A до центра вписанной окружности, с углом DAO равным половине 60 градусов то есть 30 градусов. Вот и считаем: AO = AD/cos(30) = 4√3/(√3/2) = 8, OD = AO*sin(30) = 8/2 = 4 Радиус искомой окружности равен 4
Два трикутники, в одного з яких сторонами є відстань (перпендикуляр) до основи рівнобедренного трикутника, половина сторони рівнобедренного трикутника і чостина його основи (1 трикутник) і трикутник в якому сторони-дотична, сторона і півоснова рівнобедренного трикутника подібні з коефіцієнтом подібності 1/2 (півсторони/цілу сторону) Отже висота (медіана) рівнобедренного трикутника =9*2=18 За властивостями медіан, точка їх перетину ділить медіана в співвідношенні 2:1, Отже відстань від точки перетину до основи=1/3 висоти=18/3=6
Вот и считаем:
AO = AD/cos(30) = 4√3/(√3/2) = 8,
OD = AO*sin(30) = 8/2 = 4
Радиус искомой окружности равен 4
Отже висота (медіана) рівнобедренного трикутника =9*2=18
За властивостями медіан, точка їх перетину ділить медіана в співвідношенні 2:1,
Отже відстань від точки перетину до основи=1/3 висоти=18/3=6