. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65.Найдите высоту CH.Тангенс находят делением катета, противолежащего углу, к катету прилежащемуСложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:ACtgA=(4√65):65умножим обе части отношения на √65 и получим(4*√65):65=4:√65BC:AC=4:√654AC=BC*√65АС=(18√65):4= (9√65):2Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ:АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4)АВ=81/2ВС:СН=АВ:АС18:СН=(81/2):{(9√65):2}18 CH=9:√65CH=18:(9:√65)=2√65
Объяснение:
1)АМ - гипотеза, ВМ-катет против угла 30*,тогда
ВМ=1/2 ВМ=26:2=13
2)<А=90-60=30*,тогда ВМ-катет против угла 30*,ВМ=30:2=15
5)∆АВС - равносторонний, все углы равны и высота является биссектрисой, <МАВ=30*
Расстояние от М до АВ - это перпендикуляр МК к стороне АВ и в ∆МКА МК является катетом против угла 30* и МК=МА:2=8:2=4
6) кратчайшее расстояние от М до АВ - это высота из вершины М.
∆АВМ прямоугольный, равнобедренный и высота МН является медианой. Тогда по свойству медианы прямоугольного треугольника МН=8:2=4