A) Суммой будет вектор, начало которого совпадает с началом первого, а конец - с концом последнего вектора. Вектор LA равен вектору MD, значит вектор а=AD, так как сумма векторов DM+MD=0 (сумма противоположных векторов). ответ: а=AD+DM+LA=AD. б) Разность двух векторов b и a, имеющих общее начало, представляется направленным отрезком, соединяющим концы этих векторов и имеющим направление «к концу того вектора, из которого вычитают». Вектор АС равен разности векторов с-а. Вектор AN=(c-a)/2.Вектор BN=a+(c-a)/2. Вектор BM=(2/3)*(a+(c-a)/2)=(a+c)/3. Вектор SM=(a+c)/3 - b = (a+c-3b)/3.
Диагональ BD выразим через теорему косинусов: BD^2 = AB^2 + AD^2 - 2*AB*AD*cosBAD BD^2 = 4 + 9 - 2*2*3*1/2 = 13 - 6 = 7 BD = √7 Идём дальше. Сумма углов параллелограмма - 360 градусов. Если BAD = 60, то и BCD = 60, а значит ABC = CDA = (360 - BAD - BCD)/2 = (360 - 60 - 60)/2 = 240/2 = 120 градусов. Точно так же, по теореме косинусов, ищем диагональ AC: AC^2 = AB^2 + BC^2 - 2*AB*BC*cosABC AC^2 = 4 + 9 - 2*2*3*(-1/2) = 13 + 6 = 19 AC = √19 Площадь параллелограмма в принципе можно было бы найти через площади треугольников, но пойдём более классическим путём и найдём сначала его высоту (тем более всё равно требуется). Рассмотрим прямоугольный треугольник ABE, здесь AB - гипотенуза, а искомый BE - катет. Тогда верно: BE = AB*sinBAE = 2*√3/2 = √3 Отсюда площадь параллелограмма: S = AD*BE = 3 * √3 Но нас вроде как просили найти высотЫ. Значит надо ещё по аналогии с BE построить высоту, например, BH, падающую на сторону CD, и для прямоугольного треугольника BCH, будет верно: BH = BC*sinBCH = 3*√3/2 = 1,5*√3
а конец - с концом последнего вектора.
Вектор LA равен вектору MD, значит вектор а=AD, так как сумма векторов DM+MD=0 (сумма противоположных векторов).
ответ: а=AD+DM+LA=AD.
б) Разность двух векторов b и a, имеющих общее начало, представляется направленным отрезком, соединяющим концы этих векторов и имеющим направление «к концу того вектора, из которого вычитают».
Вектор АС равен разности векторов с-а.
Вектор AN=(c-a)/2.Вектор BN=a+(c-a)/2.
Вектор BM=(2/3)*(a+(c-a)/2)=(a+c)/3.
Вектор SM=(a+c)/3 - b = (a+c-3b)/3.
BD^2 = AB^2 + AD^2 - 2*AB*AD*cosBAD
BD^2 = 4 + 9 - 2*2*3*1/2 = 13 - 6 = 7
BD = √7
Идём дальше. Сумма углов параллелограмма - 360 градусов. Если BAD = 60, то и BCD = 60, а значит ABC = CDA = (360 - BAD - BCD)/2 = (360 - 60 - 60)/2 = 240/2 = 120 градусов. Точно так же, по теореме косинусов, ищем диагональ AC:
AC^2 = AB^2 + BC^2 - 2*AB*BC*cosABC
AC^2 = 4 + 9 - 2*2*3*(-1/2) = 13 + 6 = 19
AC = √19
Площадь параллелограмма в принципе можно было бы найти через площади треугольников, но пойдём более классическим путём и найдём сначала его высоту (тем более всё равно требуется). Рассмотрим прямоугольный треугольник ABE, здесь AB - гипотенуза, а искомый BE - катет. Тогда верно:
BE = AB*sinBAE = 2*√3/2 = √3
Отсюда площадь параллелограмма:
S = AD*BE = 3 * √3
Но нас вроде как просили найти высотЫ. Значит надо ещё по аналогии с BE построить высоту, например, BH, падающую на сторону CD, и для прямоугольного треугольника BCH, будет верно:
BH = BC*sinBCH = 3*√3/2 = 1,5*√3