Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
ΔOKD: OK = KD · cos (α/2)
Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13
cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13
Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430