Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³
Відповідь: 2π см або 6,28 см
Пояснення:
Дано :ΔАВС, АВ=6 см, ∠А=100°, ∠В=50°
Знайти: ∪АВ-?
Рішення:
Проти меншого кута лежить менша сторона, отже менший кут спираєтьсяна найменшу дугу.
За теоремою про суму кутів трикутника
∠А+∠В+∠С=180°
100°+50°+∠С=180°
∠С=180°-150°
∠С=30°
Отже ∪АВ- найменша, а ∠С- вписаний кут.
∠ АОВ- центральний- він = 60° (Вписаний кут дорівнює половині центрального кута)∠С=1/2 ∠АОВ → ∠АОВ=2∠С=2*30°=60°
Розглянемо ΔАОВ, де АО=ОВ= r , ∠АОВ=60°, так як кути при основі рівнобедреного трикутника рівні, то ∠ВАО=∠АВО
2∠ВАО+∠АОВ=180°( за теоремою про суму кутів Δ)
∠ВАО=∠АВО =(180-°60°):2=60°.
Всі кути рівні, отже ΔАОВ- рівносторонній АО=ОВ=АВ=r=6 cм
довжина дуги:
(cм)≈2*3,14≈6,28 см
Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³