Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)
Четырёхугольник ABCD — ромб.
ВЕ⊥CD.
∠DBE = 20°.
∠BAD = ?
Следовательно, ∆BCD — равнобедренный (по определению).
Рассмотрим ∆BED.
По теореме о сумме острых углов прямоугольного треугольника :
∠DBE + ∠BDE = 90°
∠BDE = 90° - ∠DBE = 90° - 20° = 70°.
Тогда по свойству равнобедренного треугольника ∠D = ∠B = 70°.
По теореме о сумме углов треугольника :
∠B + ∠D + ∠C = 180°
∠C = 180° - ∠B - ∠D = 180° - 70° - 70° = 40°.
Следовательно, ∠С = ∠BAD = 40°.
40°.
Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)
Четырёхугольник ABCD — ромб.
ВЕ⊥CD.
∠DBE = 20°.
Найти :∠BAD = ?
Решение :Ромб — это параллелограмм, все стороны которого равны между собой.Следовательно, ∆BCD — равнобедренный (по определению).
Рассмотрим ∆BED.
По теореме о сумме острых углов прямоугольного треугольника :
∠DBE + ∠BDE = 90°
∠BDE = 90° - ∠DBE = 90° - 20° = 70°.
Тогда по свойству равнобедренного треугольника ∠D = ∠B = 70°.
По теореме о сумме углов треугольника :
∠B + ∠D + ∠C = 180°
∠C = 180° - ∠B - ∠D = 180° - 70° - 70° = 40°.
Противоположные углы параллелограмма равны.Следовательно, ∠С = ∠BAD = 40°.
ответ :40°.