Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его состоит в преобразовании квадратов, построенных на катетах, в равновеликие треугольники, составляющие вместе квадрат гипотенузы.
Рис. 10. ABC сдвигаем, как показано стрелкой, и он занимает положение KDN. Оставшаяся часть фигуры AKDCB равновелика площади квадрата AKDC – это параллелограмм AKNB.
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b²
Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его состоит в преобразовании квадратов, построенных на катетах, в равновеликие треугольники, составляющие вместе квадрат гипотенузы.
Рис. 10. ABC сдвигаем, как показано стрелкой, и он занимает положение KDN. Оставшаяся часть фигуры AKDCB равновелика площади квадрата AKDC – это параллелограмм AKNB.