ΔABD = ΔDCA по трем сторонам (AD - общая, АВ = CD так как трапеция равнобедренная, BD = СA как диагонали равнобедренной трапеции) ⇒ ∠CAD = ∠BDA, тогда ΔAOD равнобедренный, прямоугольный.
Так как АС = BD и АО = OD, то и ОС = ОВ. ⇒ ΔВОС равнобедренный, прямоугольный.
Проведем высоту КН через точку пересечения диагоналей. ОК - высота и медиана равнобедренного треугольника ВОС, ОН - высота и медиана равнобедренного треугольника AOD.
ОК = ВС/2 как медиана, проведенная к гипотенузе, ОН = AD/2как медиана, проведенная к гипотенузе. ⇒ КН = (AD + BC)/2, средняя линия треугольника равна полусумме оснований, значит средняя линия равна высоте и равна 19 см.
Обозначим трапецию буквами ABCD, где AD - нижнее основание, BC - верхнее основание. Пусть AD=a, BC=b. Опустим высоту из точки С на основание AD. Пусть СO - высота трапеции. Так как трапеция равнобокая, то есть AB=CD, а ее диагонали пересекаются под прямым углом, то AC=BD, а угол CAD=45 градусов. Рассмотрим треугольник CAO. Он прямоугольный, а так как угол CAD=45 градусов, то угол ACO=45 градусов и CO=AO
Найдем чему равно AO:
AO=AD-OD
Так как трапеция равнобокая, то
OD=(AD-BC)/2=(a-b)/2
AO=AD-OD=a-(a-b)/2=(a+b)/2 (а это и есть формула средней линии), то есть
⇒ ∠CAD = ∠BDA, тогда ΔAOD равнобедренный, прямоугольный.
Так как АС = BD и АО = OD, то и ОС = ОВ.
⇒ ΔВОС равнобедренный, прямоугольный.
Проведем высоту КН через точку пересечения диагоналей.
ОК - высота и медиана равнобедренного треугольника ВОС,
ОН - высота и медиана равнобедренного треугольника AOD.
ОК = ВС/2 как медиана, проведенная к гипотенузе,
ОН = AD/2как медиана, проведенная к гипотенузе.
⇒ КН = (AD + BC)/2,
средняя линия треугольника равна полусумме оснований, значит
средняя линия равна высоте и равна 19 см.
Обозначим трапецию буквами ABCD, где AD - нижнее основание, BC - верхнее основание. Пусть AD=a, BC=b. Опустим высоту из точки С на основание AD. Пусть СO - высота трапеции. Так как трапеция равнобокая, то есть AB=CD, а ее диагонали пересекаются под прямым углом, то AC=BD, а угол CAD=45 градусов. Рассмотрим треугольник CAO. Он прямоугольный, а так как угол CAD=45 градусов, то угол ACO=45 градусов и CO=AO
Найдем чему равно AO:
AO=AD-OD
Так как трапеция равнобокая, то
OD=(AD-BC)/2=(a-b)/2
AO=AD-OD=a-(a-b)/2=(a+b)/2 (а это и есть формула средней линии), то есть
AO=CO=10см
ответ: средняя линия равна 10см.