Составь и запиши заметку в детский журнал или газету. 1) выбири тему. 《Когда я был в музее...》.《Картинная галерея удивила меня тем, что...》. 《 На концерте происходило...》. Предложи свою тему. 2) Напиши заметку в детскую газету.
Если две прямые перпендикулярны третьей, то они параллельны между собой.
АА₁ ⊥ АВ; ВВ₁ ⊥ АВ; КК₁ ⊥ АВ ⇒ АА₁ || ВВ₁ || КК₁.
Теорема Фалеса:
Если на одной из двух прямых отложить последовательно несколько равных между собой отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
KK₁ = 3 ед.
Объяснение:
Дано: прямая АВ;
АК=КВ;
АА₁ ⊥ АВ; ВВ₁ ⊥ АВ; КК₁ ⊥ АВ.
АА₁ = 5; ВВ₁ = 11.
Найти: КК₁
Пусть А₁В₁= 2а.
Если две прямые перпендикулярны третьей, то они параллельны между собой.
АА₁ ⊥ АВ; ВВ₁ ⊥ АВ; КК₁ ⊥ АВ ⇒ АА₁ || ВВ₁ || КК₁.
Теорема Фалеса:
Если на одной из двух прямых отложить последовательно несколько равных между собой отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
АК = КВ ⇒ А₁К₁ = К₁В₁ = а.
Рассмотрим ΔА₁АО и ΔОВВ₁ - прямоугольные.
Вертикальные угла равны.
∠1 = ∠2 (вертикальные)
⇒ ΔА₁АО ~ ΔОВВ₁ (по двум углам)
Составим пропорцию:
Пусть А₁О = 5х, тогда ОВ₁ = 11х
Составим уравнение:
⇒
Тогда
Рассмотрим ΔА₁АО и ΔК₁КО - прямоугольные.
∠1=∠2 (вертикальные)
⇒ ΔА₁АО ~ ΔК₁КО
Составим пропорцию:
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.