Сторона FE меньше за сторону EP в два раза. Проверим, не является ли этот треугольник прямоугольным с углом в 30°, учитывая, что FP<EP.
Квадрат наибольшей стороны равен сумме квадратов остальных сторон ⇒ ΔFEP — прямоугольный, ∠EFP = 90°, т.к. лежит напротив гипотенузы.
Если катет треугольника лежит напротив угла в 30°, то он равен половине гипотенузы. Используем это свойство в обратную сторону:
Если катет меньше гипотенузы в два раза, тогда он лежит против угла в 30°. Катет FE = 1/2 гипотенузы EP ⇒ ∠EPF = 30°. Тогда по теореме о сумме углов треугольника ∠FEP (∠E) = 180−(90+30) = 60°.
Р-м ΔKFP:
∠KFP = 90°, т.к. смежный с прямым углом ∠EFP. KF = PF — по условию ⇒ равнобедренный, следовательно ∠FKP (∠K) = FPK = (180−90)/2 = 45°.
ответ:1.
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √(1 - cos²∠B) = √(1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°
∠ Р-м ΔFEP:
Сторона FE меньше за сторону EP в два раза. Проверим, не является ли этот треугольник прямоугольным с углом в 30°, учитывая, что FP<EP.
Квадрат наибольшей стороны равен сумме квадратов остальных сторон ⇒ ΔFEP — прямоугольный, ∠EFP = 90°, т.к. лежит напротив гипотенузы.
Если катет треугольника лежит напротив угла в 30°, то он равен половине гипотенузы. Используем это свойство в обратную сторону:
Если катет меньше гипотенузы в два раза, тогда он лежит против угла в 30°. Катет FE = 1/2 гипотенузы EP ⇒ ∠EPF = 30°. Тогда по теореме о сумме углов треугольника ∠FEP (∠E) = 180−(90+30) = 60°.
Р-м ΔKFP:
∠KFP = 90°, т.к. смежный с прямым углом ∠EFP. KF = PF — по условию ⇒ равнобедренный, следовательно ∠FKP (∠K) = FPK = (180−90)/2 = 45°.
Р-м ΔKEP:
∠E = 60°, ∠K = 45° ⇒ ∠P = 180−(60+45) =75°
ответ: Углы треугольника равны 60°, 45° и 75°.