В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Составить уравнение прямой в виде мх+ny+g=0, перпендикулярной к прямой -2x+7y-5=0 и проходящей через точку а (20; -14)

Показать ответ
Ответ:
guest246
guest246
07.09.2020 23:29
Уравнение прямой -2x+7y-5=0 преобразуем в уравнение с коэффициентом:  y = (2/7)x + (5/7).Найдем уравнение NА, проходящее через точку А(20;-14), перпендикулярно прямой -2x+7y-5=0
Прямая, проходящая через точку А0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
\frac{x-x_o}{A} = \frac{y-y_o}{B}
Уравнение прямой : 

y = -7/2x + 56 или 2y +7x -112 = 0
Данное уравнение можно найти и другим Для этого найдем угловой коэффициент k1 прямой .
Уравнение AB: , т.е. k1 = 2/7
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим :
2/7k = -1, откуда k = -7/2
Так как искомое уравнение проходит через точку A и имеет k = -7/2,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 20, k = -7/2, y0 = -14 получим:
y-(-14) = -7/2(x-20)
или
y = -7/2x + 56 или 2y + 7x - 112 = 0
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота