Есть теорема которая гласит, что через две пересекающиеся прямые проходит одна и только одна плоскость. Пусть эти прямые будут a & b. Так как по условию b пересекает c, то они имеют одну общую точку, которая лежит на b, и следовательно эта точка лежит в плоскости. Так как c пересекает a, то они тоже имеют одну общую точку, которая лежит на a, и следовательно это точка лежит в той же плоскости. Далее есть такое утверждение, что если две точки прямой лежат в плоскости, то и вся прямая лежит в этой же плоскости. Так как две точки прямой c лежат в плоскости в которой лежат a & b то и c принадлежит той же плоскости
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))