Сторона АВ треугольника ABC продолжена за точку В.На продолжении отмечена точка D так, что BD = ВС. Найди величину угла BDC, если угол ACB равен 47°, а угол ВАС равен 59.
1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°. Найти: ∠D, ∠С, ∠В Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву). 2. Получим систему: ∠С+∠В=180° ∠С-∠В=48° Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый). ответ: 90°, 114°, 66° 2) Дано: ABCD - прямоугл., ∠АВО=36° Найти: ∠АОD Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА. 2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°. 3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72° ответ: 72°
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
ответ: 72°
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².