Сторона АВ треугольника АВС равна 18 см. Сторона ВС разделена на 6 равных отрезков и через точки деления проведены прямые, параллельные стороне АВ. Найдите длины отрезков этих прямых , содержащихся между сторонами треугольника
Основание пирамиды - прямоугольный треугольник с катетом 5 см и гипотенузой 13 см. Все боковые грани пирамиды наклонены к основанию под углом 45°. Найдите высоту пирамиды.
ответ: 2 см
Объяснение.
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, то высота проходит через центр вписанного в основание пирамиды круга. (теорема).
Боковые грани образуют с основанием двугранные углы, величина которых по условию 45°.Сторонами их линейных углов являются высоты боковых граней и радиусы вписанной окружности, которые являются проекцией этих высот на основание и по т. о 3-х перпендикулярах перпендикулярны сторонам треугольника в одной точке ( см. рисунок приложения.). Высота пирамиды МО, радиус вписанной окружности ОН и высота МН боковой грани образуют прямоугольный треугольник МОН. Если один из острых углов прямоугольного треугольника равен 45°, то второй тоже 45° =>
∆ МОН - равнобедренный и МО=ОН=r .
Формула радиуса окружности, вписанной в прямоугольный треугольник, r=(a+b-c):2, где а и b - катеты, с - гипотенуза.
Стороны треугольника с гипотенузой 13 и катетом 5 из Пифагоровых троек с отношением сторон 5:12:13. Второй катет АС=12 ( проверьте по т.Пифагора). =>
Свойства параллельных прямых:
Если параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Если параллельные прямые пересечены секущей, то соответственные углы равны.
Если параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Признаки параллельности прямых:
Если накрест лежащие углы, образованные при пересечении двух прямых секущей, равны, то эти прямые параллельны.
Если соответственные углы, образованные при пересечении двух прямых секущей, равны, то эти прямые параллельны.
Если сумма односторонних углов, образованных при пересечении двух прямых секущей, равна 180°, то эти прямые параллельны.
Доказательство 1-го признака:
Дано: с∩а, с∩b, ∠1 = ∠2.
Доказать: a║b.
Доказательство:
Пусть А и В - точки пересечения прямой с с прямыми а и b соответственно. О - середина отрезка АВ.
Проведем через точку О прямую КН перпендикулярную прямой b.
АО = ОВ, ∠1 = ∠2 по условию, ∠АОН = ∠ВОК как вертикальные, значит ΔАОН = ΔВОК по стороне и двум прилежащим к ней углам.
Значит ∠ВКО = ∠АНО = 90°, т.е. КН⊥b и КН⊥а, а если две прямые перпендикулярны третьей, то они параллельны, т.е. a║b.
Основание пирамиды - прямоугольный треугольник с катетом 5 см и гипотенузой 13 см. Все боковые грани пирамиды наклонены к основанию под углом 45°. Найдите высоту пирамиды.
ответ: 2 см
Объяснение.
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, то высота проходит через центр вписанного в основание пирамиды круга. (теорема).
Боковые грани образуют с основанием двугранные углы, величина которых по условию 45°.Сторонами их линейных углов являются высоты боковых граней и радиусы вписанной окружности, которые являются проекцией этих высот на основание и по т. о 3-х перпендикулярах перпендикулярны сторонам треугольника в одной точке ( см. рисунок приложения.). Высота пирамиды МО, радиус вписанной окружности ОН и высота МН боковой грани образуют прямоугольный треугольник МОН. Если один из острых углов прямоугольного треугольника равен 45°, то второй тоже 45° =>
∆ МОН - равнобедренный и МО=ОН=r .
Формула радиуса окружности, вписанной в прямоугольный треугольник, r=(a+b-c):2, где а и b - катеты, с - гипотенуза.
Стороны треугольника с гипотенузой 13 и катетом 5 из Пифагоровых троек с отношением сторон 5:12:13. Второй катет АС=12 ( проверьте по т.Пифагора). =>
ОН=r=(5+12-13):2= 2 см.
МО=ОН=2 см ( высота пирамиды)