Сторона основания правильной четырехугольной пирамиды равна 11 ✓2 см боковые грани пирамиды - правильные трикутники.Знайдите площадь диагонального сечения
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
4) ад=60/5*2=24
4) l adb = 30 град. > в треугольнике abd угол l a = 90 - 30 = 60 град.
l adb = l bdc = 30 град. > l d = l adb + l bdc = 30 + 30 = 60 град. =>
ab = cd > трапеция равнобедренная
bk и cm - перпендикуляры к ad > ak = md
треугольник abk:
l abk = 90 град.; l a = 60 град. и l abk = 30 град. => если
ak = x > ab = 2x (аналогично в треугольнике mcd: md = x и cd = 2x)
в трапеции abcd:
bk _|_ ad > l kbc = 90 град.
l kbd = 90 - l kdb = 90 - 30 = 60 град. =>
l cbd = l kbc - l kbd = 90 - 60 = 30 град. =>
в треугольнике bcd, так как l cbd = l cdb = 30 град. > bc = cd = x
=> в трапеции abcd:
ab = cd = 2x
ak = md = x
km = bc = cd = x =>
ad = ak + km + md = x + 2x + x = 4x
bc = 2x =>
p = ab + bc + cd + ad = 2x + 2x + 2x + 4x = 60 > 10x = 60 > x = 6
=>
ab = bc = cd = 2x = 2*6 = 12
ad = 4x = 4*6 = 24
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².