Сторона основания правильной треугольной призмы равна 12см, высота призмы равна 93√ см. вычисли объём и площадь поверхности призмы. объём призмы равен см3. площадь поверхности призмы равна корень из 3 см2.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
1)Докажем,что данный четырёхугольник является прямоугольником.
1)ST=(0+1;-2-0)=(1;-2)
2)RP=(-4+5;-4+2)=(1;-2)
3)PS=(-1+5;0+2)=(4;2)
4)PT=(0+4;-2+4)=(4;2)
Координаты векторов равны,следовательно будут равны и их длины.
Теперь докажем,что углы данного четырёхугольника равны по 90 градусов.Ведь прямоугольник это такой четырехугольник,у которого все углы по 90 градусов.
1)PS*ST=(4*1)+(2*(-2))=4-4=0
2)PT*ST=(4*1)+(2*(-2))=4-4=0 =>
Углы STP u TSP= 90 градусов.
Значит и противоположные углы равно по 90 градусов.Данный четырёхугольник — прямоугольник.
2)RT=PS как диагонали прямоугольника.Найдем их длины:
|RT|= V(0+5)^2 + (-2+2)^2
|RT| =V25
|RT|= 5
|PS|= 5
Вычислим и координаты:
PS= (-1+4;0+4)=(3;4)
TR=(-5-0;-2+2)=(-5;0)
Вычислим косинус по формуле:
сos a = (a(вектор) * b(вектор))/ |а| * |b| = cos a = PS*TR / |PS|*|TR| = 3*(-5)+4*0 / 5*5 = — 3/5 = —0,6.
3)S= |PR|* |PT|
|PR| = V(-5+4)^2 + (-2+4)^2 = V5
|PT| = V(0+4)^2 + (-2+4)^2 = V20
S= V5*V20= V100 = 10
Для справки:
Не забудьте поставить векторы(стрелки) над буквенными выражениями.
V — это обозначение корня.
^2 — это обозначение степени 2.
/ — это палочка,обозначающая дробное выражение.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.