Рассмотрим треугольник DAB и треугольник CBD. Найдем соотношение их соответствующих сторон: DA/CB=AB/BD=DB/CD 6/8=9/12=12/16, сократим дроби: 3/4=3/4=3/4. Получили, что стороны этих треугольников пропорциональны, значит треугольники подобны. У подобных треугольников соответствующие углы равны, значит угол ADB равен углу DBС. Но для прямых AD, BC и секущей BD – это накрест лежащие углы, а значит AD параллельна BC. AB не параллельна CD, так как если бы они были параллельны, то мы получили бы параллелограмм, а у него противолежащие стороны равны, что противоречит условию задачи. Значит наш четырехугольник – трапеция.
"Точка D симметрична точке относительно стороны FK" Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ. Периметр. Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О) Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ
Это означает, что если перегнуть плоскость по прямой FK то точка D и O совпадут. Соединим точку D с точками F и K , отрезки DF=FO=OK=KD
тк FO = OK (это одно из свойств диагоналей прямоугольника), DF=FO тк точка D является симметричной точке О относительно прямой FK, и отрезки проведенные из какой-то точки этой прямой к точкам D или F будут равны. А так как у ромба все стороны равны , то фигура FOKD - РОМБ.
Периметр.
Диагонали ромба равны 8 см и 6 см (по причине симметрии двух точек Д и О)
Формула диагоналей через сторону и другую диагональ D-большая диагональ d-меньшая диагональ
Возведу всё в квадрат
P=4a=4*5=20