Решение. Возможны два случая взаимного расположения прямой и окружностей.
1. Пусть окружность с центром О1 имеет радиус r , окружность центром O2 имеет радиус R, а окружность с центром O имеет радиус x и касается двух данных окружностей и их общей внешней касательной a.
Обозначим через A, B и C точки касания окружностей с прямой a, а через K, M и N — точки касания самих окружностей. Отрезки O1A, O2B и OC перпендикулярны прямой a как радиусы, проведенные в точки касания.
Опустим перпендикуляр O1D из центра меньшей из данных окружностей на радиус O2B большей окружности и перпендикуляры OE и OF из точки O на радиусы O1A и O2B. Поскольку O1A // (палочи прямые) O2B , точки E, O и F лежат на одной прямой, а так как O1DFE — прямоугольник, то O1D=EF.
(R+r)^2 - (R-r)^2 (все выражение под корнем) = (r+x)^2 - (r-x)^2(все выражение под корнем) = (R+x)^2 - (R-x)^2;
2*Rx (Rx под корнем) = 2* rx (rx под корнем) + 2*Rx (Rx под корнем)
2. Пусть теперь окружность с центром O1 имеет радиус R, окружность с центром O имеет радиус r, а окружность центром O2 имеет радиус x и касается двух данных окружностей и их общей внешней касательной a (см. тот же рисунок). Аналогично случаю 1 имеем:
(x+R)^2 - (x-R)^2 (все выражение под корнем) = (R+r)^2 - (R-r)^2 (все выражение под корнем) + (x+r )^2 - (x-r)^2(все выражение под корнем) ;
2*Rx(Rx под корнем) = 2* Rr(Rr под корнем) +2*rx(rx под корнем)
Решение.
Возможны два случая взаимного расположения прямой и окружностей.
1. Пусть окружность с центром О1 имеет радиус r , окружность центром O2 имеет радиус R, а окружность с центром O имеет радиус x и касается двух данных окружностей и их общей внешней касательной a.
Обозначим через A, B и C точки касания окружностей с прямой a, а через K, M и N — точки касания самих окружностей. Отрезки O1A, O2B и OC перпендикулярны прямой a как радиусы, проведенные в точки касания.
Опустим перпендикуляр O1D из центра меньшей из данных окружностей на радиус O2B большей окружности и перпендикуляры OE и OF из точки O на радиусы O1A и O2B. Поскольку O1A // (палочи прямые) O2B , точки E, O и F лежат на одной прямой, а так как O1DFE — прямоугольник, то O1D=EF.
Кроме того: O1O = r+x, O1O2 = r+R , O2O = R+x , O1E = r-x , O2D = R-r , O1D =EF=EO+OF , O2F = R-x.
Далее имеем:
(R+r)^2 - (R-r)^2 (все выражение под корнем) = (r+x)^2 - (r-x)^2(все выражение под корнем) = (R+x)^2 - (R-x)^2;
2*Rx (Rx под корнем) = 2* rx (rx под корнем) + 2*Rx (Rx под корнем)
2. Пусть теперь окружность с центром O1 имеет радиус R, окружность с центром O имеет радиус r, а окружность центром O2 имеет радиус x и касается двух данных окружностей и их общей внешней касательной a (см. тот же рисунок). Аналогично случаю 1 имеем:
(x+R)^2 - (x-R)^2 (все выражение под корнем) = (R+r)^2 - (R-r)^2 (все выражение под корнем) + (x+r )^2 - (x-r)^2(все выражение под корнем) ;
2*Rx(Rx под корнем) = 2* Rr(Rr под корнем) +2*rx(rx под корнем)
а) Дано уравнение 16x^2 - 9y^2 - 64x -54y - 161 = 0.
Выделим полные квадраты.
16(x^2 - 4x + 4) - 16*4 - 9(y^2 + 6y + 9) + 9*9 - 161 = 0.
16(x - 2)² - 9(y + 3)² = 144.
Разделим обе части уравнения на 144.
((x - 6)²/169) + ((y + 5)²/144) = 1, или так:
(16(x - 2)²)/144) - (9(y + 3)²/144) = 144/144.
(x - 2)²/9 + (y + 3)²/16 = 1 или в каноническом виде:
(x - 2)²/3² + (y + 3)²/4² = 1.
Это уравнение гиперболы с центром в точке О(2; -3).
Полуоси гиперболы равны: а = 3, b = 4.
Подробнее параметры и график даны во вложениях.