Сторона правильного четырехугольника, вписанного в некоторую окружность равна 2 найдите сторону правильного треугольника, описанного около этой же окружности.
Правильный шестиугольник разбивается радиусами, проведенными из его центра к вершинам на шесть правильных треугольников. Высота этого треугольника - радиус вписанной окружности. Высота (биссектриса и медиана) образует прямоугольный треугольник с боковой стороной и половиной основания. Половина основания - х; боковая сторона - 2х; по т. Пифагора - 4х²=х²+12²; х=4√3; 2х=8√3 см - боковая сторона. Радиус окружности описанной вокруг правильного треугольника - а√3/3, где а - сторона треугольника. R=8*√3*√3/3=8 см.
В равнобедренном треугольнике тупой угол (а он может быть только один в треугольнике) равен 120°. Высота из этого угла к основанию, это и медиана, и биссектриса (свойство). Пусть высота из вершины тупого угла равна Х, тогда боковая сторона треугольника равна 2х (против угла 30° лежит катет, равный половине гипотенузы). По Пифагору находим высоту и боковую сторону: 4х²-х²=6². Отсюда х=h=2, 2х=4 (боковая сторона). Площадь треугольника равна S=(1/2)*h*12=12. Эту же площадь можно найти как произведение: (1/2)*высота к боковой стороне*Бок.сторона. Отсюда высота к боковой стороне равна 2S/бок.сторона или 24/4=6. ответ: искомая высота равна 6.
Высота этого треугольника - радиус вписанной окружности.
Высота (биссектриса и медиана) образует прямоугольный треугольник с боковой стороной и половиной основания.
Половина основания - х;
боковая сторона - 2х;
по т. Пифагора - 4х²=х²+12²;
х=4√3;
2х=8√3 см - боковая сторона.
Радиус окружности описанной вокруг правильного треугольника - а√3/3, где а - сторона треугольника.
R=8*√3*√3/3=8 см.
Площадь треугольника равна S=(1/2)*h*12=12.
Эту же площадь можно найти как произведение:
(1/2)*высота к боковой стороне*Бок.сторона.
Отсюда высота к боковой стороне равна 2S/бок.сторона или 24/4=6.
ответ: искомая высота равна 6.