Сторона правильного тетраедра дорівнює 6 см. Які серед даних тверджень правильні ? * А) Бічна поверхня тетраедра дорівнює 27√3 см2;
Б) Повна поверхня тетраедра дорівнює 24√3 см2;
В) Бічна поверхня тетраедра дорівнює 18√3 см2;
Г) Повна поверхня тетраедра дорівнює 36√3 см2;
20 см
Объяснение:
1) Пусть дана трапеция АВСD (∠А = 90°; ∠В = 90°), с основаниями AD и ВС и боковыми сторонами АВ и СD, где CD - большая боковая сторона.
2) Так как в трапецию можно вписать окружность, то суммы длин противоположных её сторон равны, то есть:
ВС + AD = AB + CD = 60 : 2 = 30 см
3) Так как трапеция прямоугольная, то длина её меньшей боковой стороны АВ равна диаметру окружности, вписанной в трапецию
АВ = 2 · R = 2 · 5 = 10 cм
4) Зная АВ, находим СD:
AB + CD = 30
10 + CD = 30
CD = 30 - 10 = 20 см
ответ: 20 см
Задача такая:
Две хорды OA OB по 5 см образуют вписанный угол в 36 градусов
Найти длину окружности
решение:
Треугольник OAB равнобедренный. Угол при вершине 36°
Угол при основании (180-36)/2 = 72°
По теореме синусов радиус описанной окружности треугольника OAB
2R = OA/sin(∠ABO)
2R = 5/sin(72°)
R = 5/(2 *sin(72°)) ≈ 2,629 см
Можно выразить в радикалах, но они здоровенные.
Теперь с дугами
∠AOB = 36° - вписанный угол
∠AZB = 2*∠AOB = 2*36 = 72° - соответствующий центральный
дуга АВ = 72°
её длина
l(AB) = R*∠AZB/180*π = 5/(2 *sin(72°))*72/180*π ≈ 3,3033 см
Дуга АО = дуга ВО = (360-72)/2 = 144°
их длина
l(AО) = R*∠AZО/180*π = 5/(2 *sin(72°))*144/180*π ≈ 6,6065 см
и полная длина окружности
l(O) = R*2*π = 5/(2 *sin(72°))*2*π ≈ 16,5163 см