Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
1 Пирамида правильная,значит в основании равносторонний треугольник со стороной 8.Высота конуса S0=2√3см Точка О делит высоту AH треугольника в отношениии 2:1 начиная от вершины А AH=AB*sin<B=8*√3/2=4√3см AO=2/3*AH=2/3*4√3=8√3/3см ΔASO прямоугольный AS-боковое ребро пирамиды и образующая конуса tg<SAO=SO/AO=2√3:8√3/3=2√3*3/8√3=0,75 <SAO=arctg0,75≈37гр 2 Рассмотрим треугольник лежащий в основании пирамиды АС²=АВ²+ВС² 5²=3²+4² 25=9+16 25=25 Следовательно треугольник прямоугольный и гипотенуза является диаметром основания конуса.Значит радиус равен R=5:2=2,5см 3 Диаметр конуса будет равен 2 радиусам окружности описанной около треугольника,лежащего в основании пирамиды R=AB*BC*AC/4S Площадь найдем по формуле Герона S=√p(p-AB)(p-BC)(p-AC),p=(AB+BC+AC)/2 p=(5+6+7)/2=9 S=√9*4*3*2)=3*2*√6=6√6 R=5*6*7/(4*6√6)=35√6/24 Диаметр равен 35√6/12
№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
Пирамида правильная,значит в основании равносторонний треугольник со стороной 8.Высота конуса S0=2√3см
Точка О делит высоту AH треугольника в отношениии 2:1 начиная от вершины А
AH=AB*sin<B=8*√3/2=4√3см
AO=2/3*AH=2/3*4√3=8√3/3см
ΔASO прямоугольный
AS-боковое ребро пирамиды и образующая конуса
tg<SAO=SO/AO=2√3:8√3/3=2√3*3/8√3=0,75
<SAO=arctg0,75≈37гр
2
Рассмотрим треугольник лежащий в основании пирамиды
АС²=АВ²+ВС²
5²=3²+4²
25=9+16
25=25
Следовательно треугольник прямоугольный и гипотенуза является диаметром основания конуса.Значит радиус равен R=5:2=2,5см
3
Диаметр конуса будет равен 2 радиусам окружности описанной около треугольника,лежащего в основании пирамиды
R=AB*BC*AC/4S
Площадь найдем по формуле Герона
S=√p(p-AB)(p-BC)(p-AC),p=(AB+BC+AC)/2
p=(5+6+7)/2=9
S=√9*4*3*2)=3*2*√6=6√6
R=5*6*7/(4*6√6)=35√6/24
Диаметр равен 35√6/12