Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Это?
ΔД = С-В = (-1+1=0; 3+1=4; 1-1=0) = (0; 4; 0).
Д = А + ΔД = (3+0=3; -1+4=3; 1+0=1) = (3; 3;1).
ΔД1 = С1-С = (-1+1=0; 3-3=0; 5-1=4) =(0; 0; 4).
Д1 = Д + Д1 = (3+0=3; 3+0=3; 1+4=5) = (3; 3; 5).
В1 = В + ΔД1 = (-1+0=-1; -1+0=-1; 1+4=50 = (-1; -1; 5).
А1 = А + ΔД1 = (3+0=3; -1+0=-1; 1+4=5) = (3; -1; 5).
б) Вершины А1(3: -1; 5) и С(-1; 3; 1).
Вектор А1С = (-1-3=-4; 3+1=4; 1-5=-4) = (-4; 4;-4) - это и есть разложение по координатным векторам вектора А1С.