Сделаем и рассмотрим рисунок. Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒ АА₁ =3√ 3 АО=2√ 3 ОА₁ =√ 3 Треугольник СОВ по условию прямоугольный, АА₁ - медиана ΔАВС, СА₁ =ВА₁ ⇒ ОА₁ - медиана прямоугольного треугольника СОВ Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3 и СВ=2√ 3 В₁ - середина АС С₁ - середина АВ В₁ С₁ - средняя линия треугольника АВС Отсюда его медиана АА₁ делится этой средней линией пополам. АМ=АА₁ :2=1,5√ 3 В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁ В₁М=0,5√ 3 Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора: АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6 Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁ ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2 Найдем гипотенузу АВ по т. Пифагора АС=2 АВ₁ =2√6 АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6 вторая медиана СС1 равна половине гипотенузы Δ АВС СС₁ =3, и это меньше, чем 3√2 Следовательно, ВВ₁ - большая из данных медиан и равна 3√2 --- [email protected]
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Значит у медианы АА1=3√3 АО/ОА1=2/1, тогда ОА1=√3 Рассмотрим прямоугольный ΔСОВ, в нем < СОВ=90 по условию. Т.к. медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы, то ОА1=1/2СВ, значит СВ=2ОА1=2√3, А1С=А1В=СВ/2=√3 Из прямоугольного ΔАСА1 найдем катет АС АС=√(АА1²-А1С²)=√((3√3)²-(√3)²)=√24=2√6 АВ1=СВ1=АС/2=√6 Из прямоугольного ΔАВС найдем гипотенузу АВ АВ=√(АС²+ВС²)=√((2√6)²+(2√3)²)=√36=6 АС1=С1В=АВ/2=3 Значит медиана СС1=1/2АВ=3 Из прямоугольного ΔСВ1В найдем гипотенузу ВВ1: ВВ1=√(СВ1²+СВ²)=√((√6)²+(2√3)²)=√18=3√2 Получилось медианы СС1=3, ВВ1=3√2, значит ВВ1>СС1 ответ: ВВ1=3√2.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒
АА₁ =3√ 3
АО=2√ 3
ОА₁ =√ 3
Треугольник СОВ по условию прямоугольный,
АА₁ - медиана ΔАВС,
СА₁ =ВА₁ ⇒
ОА₁ - медиана прямоугольного треугольника СОВ
Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине
Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3
и
СВ=2√ 3
В₁ - середина АС
С₁ - середина АВ
В₁ С₁ - средняя линия треугольника АВС
Отсюда его медиана АА₁ делится этой средней линией пополам.
АМ=АА₁ :2=1,5√ 3
В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁
В₁М=0,5√ 3
Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора:
АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6
Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁
ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2
Найдем гипотенузу АВ по т. Пифагора
АС=2 АВ₁ =2√6
АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6
вторая медиана СС1 равна половине гипотенузы Δ АВС
СС₁ =3, и это меньше, чем 3√2
Следовательно, ВВ₁ - большая из данных медиан и равна 3√2
---
[email protected]
АО/ОА1=2/1, тогда ОА1=√3
Рассмотрим прямоугольный ΔСОВ, в нем < СОВ=90 по условию. Т.к. медиана, опущенная на гипотенузу прямоугольного треугольника равна половине гипотенузы, то ОА1=1/2СВ, значит СВ=2ОА1=2√3, А1С=А1В=СВ/2=√3
Из прямоугольного ΔАСА1 найдем катет АС
АС=√(АА1²-А1С²)=√((3√3)²-(√3)²)=√24=2√6
АВ1=СВ1=АС/2=√6
Из прямоугольного ΔАВС найдем гипотенузу АВ
АВ=√(АС²+ВС²)=√((2√6)²+(2√3)²)=√36=6
АС1=С1В=АВ/2=3
Значит медиана СС1=1/2АВ=3
Из прямоугольного ΔСВ1В найдем гипотенузу ВВ1:
ВВ1=√(СВ1²+СВ²)=√((√6)²+(2√3)²)=√18=3√2
Получилось медианы СС1=3, ВВ1=3√2, значит ВВ1>СС1
ответ: ВВ1=3√2.