Стороны оснований правильной треугольной усечённой пирамиды равна 6 см и 8 см, боковое ребро равно 3 см. Найдите площадь полной поверхности усечённой пирамиды И чертеж по условию задачи)))
2, 3 и 5 части. Вначале разделяем отрезок пополам (2+3=5 и 5 частей), Для этого проводим окружности из концов отрезка радиусом как отрезок, через точки пересечения окружностей проводим прямую, она разделит наш отрезок пополам вторая часть отрезка (половина исходного отрезка) делится следующим образом: из начала отрезка проводим луч, на нем с циркуля откладываем пять равных отрезков. Конец последнего отрезка соединяем с концом нашего отрезка и через точки на луче проводим прямые параллельные полученному отрезку. Они разобьют нашу исходную половину на пять равных частей. Ставим точку на конце второй от началачасти и имеем разбитый отрезок на три части 2:3:5
Средняя линия разделена на два отрезка. Первый длиной 5,5- средняя линия треугольника, поэтому верхнее основание в два раза большей средней линии треугольника и равно11 Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса Угол 3 равен углу 1 как внутренние накрест лежащие Значит угол 2 равен углу 3 Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее. Получим два равнобедренных треугольника, с катетами (25-11):2=7 По теореме Пифагора высота h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24² h=24 S=(a+b)·h/2=(11+25)·24/2=432 кв. см
вторая часть отрезка (половина исходного отрезка) делится следующим образом:
из начала отрезка проводим луч, на нем с циркуля откладываем пять равных отрезков. Конец последнего отрезка соединяем с концом нашего отрезка и через точки на луче проводим прямые параллельные полученному отрезку. Они разобьют нашу исходную половину на пять равных частей. Ставим точку на конце второй от началачасти и имеем разбитый отрезок на три части 2:3:5
Нижнее основание в два раза больше средней линии другого треугольника и равно 25
Угол 1 равен углу 2 так как диагональ биссектриса
Угол 3 равен углу 1 как внутренние накрест лежащие
Значит угол 2 равен углу 3
Треугольник с этими углами равнобедренный и боковая сторона равна большему основанию 25
Проведем высоты с вершин верхнего основания на нижнее.
Получим два равнобедренных треугольника, с катетами (25-11):2=7
По теореме Пифагора высота
h²=25²-7²=(25-7)(25+7)=18·32=9·64=(3·8)²=24²
h=24
S=(a+b)·h/2=(11+25)·24/2=432 кв. см