1) введем обозначение МАВСД - данная пирамида. МО- высота. Высоту боковой грани МК оозначим за х, тогда сторона основания будет равна АВ=2√(x²-9)
из формулы площади боковой поверхности находим:
S=2AB*MK=4√(x²-9)*x
8=4√(x²-9)*x
4=(x²-9)*x²
x^4-9x²-4=0
x²1=(9+√97)/2
x1=√((9+√97)/2)
x²2=(9-√97)/2; посторонний корень.
Cедовательно АВ=2√((√97-9)/2)
Тогда объем пирамиды будет равен:
V=1/3*(√97-9)/2*3=(√97-9)/2
2)
пусть х-сторона основания, тогда высота сечения h=x√6/2, из площади сечения находим:
S=1/2*x*h
4√6=x²*√6/4
x=4
Тогда высота призмы будет Н=х√3=4√3
V=1/2*4*4*√3/2*4√3=48
Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
1) введем обозначение МАВСД - данная пирамида. МО- высота. Высоту боковой грани МК оозначим за х, тогда сторона основания будет равна АВ=2√(x²-9)
из формулы площади боковой поверхности находим:
S=2AB*MK=4√(x²-9)*x
8=4√(x²-9)*x
4=(x²-9)*x²
x^4-9x²-4=0
x²1=(9+√97)/2
x1=√((9+√97)/2)
x²2=(9-√97)/2; посторонний корень.
Cедовательно АВ=2√((√97-9)/2)
Тогда объем пирамиды будет равен:
V=1/3*(√97-9)/2*3=(√97-9)/2
2)
пусть х-сторона основания, тогда высота сечения h=x√6/2, из площади сечения находим:
S=1/2*x*h
4√6=x²*√6/4
x=4
Тогда высота призмы будет Н=х√3=4√3
V=1/2*4*4*√3/2*4√3=48
Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.