В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
бабуся3
бабуся3
25.09.2021 01:19 •  Геометрия

Стороны параллелограмма равны 8 см и 4 см, а угол между ними равен 120 ° . чему равны диагонали параллелограмма?

Показать ответ
Ответ:
иска4578
иска4578
16.07.2020 03:31

Объяснение:

Чтобы решать такие задачи, нужно уметь правильно определять, что есть наша прямая, что есть наклонная к нашей прямой, а что есть проекция наклонной.

4. В четвертой задаче у вас по условию дан уже прямой угол, от этого нужно отталкиваться.

Нам дан прямой угол между BC и AC, эти прямые обе лежат в плоскости нижнего треугольника, значит какая то из них будет являтся искомой прямой, а какая то будет  проекцией наклонной на эту же плоскость нижнего треугольника. BC не может быть ничьей проекцией по рисунку, значит она будет являтся нашей прямой. Тогда AC

будет являться чьей-то проекцией. По рисунку видно, что AC будет являтся проекцией MC и MA перпендикуляр к плоскости ACB(если не понятны мои рассуждения, рекомендую разобраться, как строятся

наклонные и их проекции, а также разобраться и с самой теоремой о этих перпендикулярах).  

Таким образом, зная все три прямые, можем применять теорему о трех перпендикулярах.

BC (наша прямая в плоскости) перпенд. AC (AC проекция MC) - по условию, значит BC также будет перпендикулярна и самой MC - по теореме.

Дальше просто техническая часть, находим BC из нижнего прямоугольного треугольника и применяем свойство синуса для нахождения гипотенузы MB в треуг. MCB.

5. В пятом задании необходимо правильно определить искомое расстояние, (как известно, расстояние это кратчайший путь, т.е перпендикуляр). Когда мы его проведем (пусть это будет MO),

он будет являтся нашей наклонной на плоскость ABC, далее необходмо будет провести проекцию данной наклонной в плоскости ABC. Так как MO - уже перпендикуляр к

AC, то и его проекция в плоскости также будет перпендикулярна к AC. Далее, похожая техническая часть 4-го задания, увидим в плоскости ABC необходмый прямоугольный треугольник,  

применяя свойство синуса найдем катет. И в нашем искомом треугольнике также найдем сторону по Пифагору (зная, что MB перпендикуляр к плоскости).

P.S Делать нечего на третьем курсе физмата <3

0,0(0 оценок)
Ответ:
famin19810
famin19810
27.04.2023 15:30

В условии явно не отобразилось √2 при значении диагонали. .  

Правильное условие задачи:

Найдите косинус угла между плоскостями квадрата ABCD и равностороннего треугольника ABM, если диагональ квадрата равна 4√2 см и расстояние от точки M до стороны DC равно 5 см.

Решение. (см. рисунок 1) 

Диагональ квадрата делит его на два равных прямоугольных треугольника с острым углом 45°. Поэтому сторона квадрата равна АВ=4√2•sin 45°=4 (cм).

Искомый угол - угол между высотой МН правильного треугольника АМН  и отрезком КН, проведенными перпендикулярно к середине  АВ. 

МН= АВ•sin60°=4•√3/2=2√3 

Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой. 

По т. о трёх перпендикулярах МК ⊥ - ⇒ это расстояние от М до CD, равное 5 см. По т.косинусов  

cos∠MHK=(KM²-KN²+MH²):(-2•KH•MH)

cos∠MHK=(25- 16-12):(-2•4•2√3)=√3/16

              * * *

Решение по данному в вопросе условию: 

Если диагональ квадрата равна 4 см,  то, т.к. она делит квадрат на два равных прямоугольных равнобедренный с острым углом 45°,  его сторона равна 4•sin45°=2√2. 

Искомый угол - угол между перпендикулярами, проведенными в каждой плоскости к одной точке на стороне АВ. (на линии их пересечения), т.е. это угол между высотой МК треугольника АМВ и отрезком КН, проведенным через  середины сторон АВ и СD квадрата, т.к. МК⊥АВ, и НК⊥АВ.

  АВ - общая для квадрата и равностороннего треугольника, и 

МК=АВsin 60°=2√2•√3/2=√6

Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой. 

Т.к. КН ⊥СD,  то по т. о трех перпендикулярах  МК⊥CD, ⇒ МК=5.

По т.косинусов из ∆ МКН 

cos ∠MKH=(MH²-MK²-KH²)² (- 2MK•KH)

cos ∠MKH=(25-8-6): (-2•2√12)

cos ∠MKH= -11/8√3= - 0,7939 Это косинус тупого угла. 

По данному решению рисунок в приложении 2. 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота