Стороны треугольника ABC равны 9, 7 и 8, а стороны треугольника DEF равны 14, 18 и 13. Если треугольники подобны, то определить коэффициент подобия, в противном случае периметр второго треугольника.
Развернутый ∠ АОВ содержит половину градусной меры окружности и равен 180°. ∠АВN - вписанный и опирается на дугу АN, равную 2∠ABN=72° ∠NMB также вписанный и опирается на дугу NB Дуга NB=AOB-NА=180°-72°=108° ∠NMB равен половине дуги, на которую опирается, или, иначе, половине центрального угла NОB ∠NMB=108°:2=54° Замечу, что при любом местоположении вершины угла NMB пр ту же сторону диаметра (например, в точке М1 или М2) он будет опираться на дугу, равную 108° и будет равен половине ее градусной меры, т.е. 54°
Пусть Н - середина АВ, тогда ОН⊥АВ, так как ΔАОВ равнобедренный (АО = ОВ как радиусы), SH⊥АВ, так как ΔSAB равнобедренный (SA = SB как образующие), ⇒ ∠SHO = φ - линейный угол двугранного угла наклона сечения к плоскости основания.
ΔSOH: ∠SOH = 90°, ctgφ = OH / h
OH = h·ctgφ
ОН - медиана, высота и биссектриса ΔАОВ, ⇒ ∠АОН = α/2.
∠АВN - вписанный и опирается на дугу АN, равную 2∠ABN=72°
∠NMB также вписанный и опирается на дугу NB
Дуга NB=AOB-NА=180°-72°=108°
∠NMB равен половине дуги, на которую опирается, или, иначе, половине центрального угла NОB
∠NMB=108°:2=54°
Замечу, что при любом местоположении вершины угла NMB пр ту же сторону диаметра (например, в точке М1 или М2)
он будет опираться на дугу, равную 108° и будет равен половине ее градусной меры, т.е. 54°
SAB - данное сечение, ∪АВ = α.
Пусть Н - середина АВ, тогда ОН⊥АВ, так как ΔАОВ равнобедренный (АО = ОВ как радиусы), SH⊥АВ, так как ΔSAB равнобедренный (SA = SB как образующие), ⇒ ∠SHO = φ - линейный угол двугранного угла наклона сечения к плоскости основания.
ΔSOH: ∠SOH = 90°, ctgφ = OH / h
OH = h·ctgφ
ОН - медиана, высота и биссектриса ΔАОВ, ⇒ ∠АОН = α/2.
ΔАОН: ∠AHO = 90°,
cosα/2 = OH/AO, ⇒ R = AO = OH / cosα/2
R = h·ctgφ / cosα/2
V = 1/3 πR²h = 1/3 · π · h · (h·ctgφ / cosα/2)²
V = πh³·ctg²φ / (3cos²α/2)