1)Пусть АВСД - данный параллелограмм, угол А-тупой, ВН -высота. АН=2 см, НД=8см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов. В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
Поясняю. Угол опирается на дугу равную двойному углу, т.е. угол 100 градусов опирается на дугу 100*2=200, а угол 64 на дугу 64*2=128 градусов.
По рисунку видно, что нам надо найти дугу, которая является разностью дуги CAD из дуги ABC.
200 - 128 = 72 градуса - дуга, на которую опирается угол ABD, делим пополам и воуля 72:2=36 градусов - сам угол ABD
ответ: угол ABD = 36 градусов
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов.
В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).