Основание треугольника - b, боковые стороны- а, Для любого треугольника верна теорема синусов: а/sin Ф =2d, значит а=2d*sin Ф Также угол при основании равнобедренного треугольника cos Ф = b/2a, откуда b=2a* cos Ф =2*2d*sin Ф* cos Ф=4d*sin Ф* cos Ф=2d sin 2Ф
радиус круга, вписанного в данный треугольник r=b/2*√(2a-b)/(2a+b)= =2d sin 2Ф/2 * √(2*2d sin Ф - 2d sin 2Ф)/(2*2d sin Ф + 2d sin 2Ф)= =d sin 2Ф *√(2 sin Ф - sin 2Ф)/(2 sin Ф + sin 2Ф)= =d sin 2Ф *√(2 sin Ф - 2sin Ф cos Ф)/(2 sin Ф + 2 sin Ф cos Ф)= =d sin 2Ф *√(1- cos Ф)/(1+ cos Ф)=d sin 2Ф *√tg² (Ф/2)=d sin 2Ф *tg (Ф/2)= =d*2sin Ф cosФ*(1-cos Ф)/sin Ф=2d*cosФ*(1-cos Ф)
Проведём А₁К перпендикулярно АС, СМ параллельно А₁К, СМ перпендикуляр к АС и ВС перпендикуляр к АС, значит угол МСВ- линейный угол двугоранного угла между плоскостями АСС₁А и АВС. Угол МСВ=90⁰ , АС перпендикуляр к ВС, АК- проекция АА₁ , по теореме о трех перпендикулярах АА₁ перпендикуляр к ВС. Значит и СС₁ перпендикуляр в ВС. Четырехугольник ВВ₁С₁С- прямоугольник. Его площадь равна 56. Катет ВС=7, значит боковые ребра призмы 8 7*8=56 Из прямоугольного треугольника АА₁К зная угол А₁АК=45⁰ ( по условию) найдем высоту А₁К=4√2
Для любого треугольника верна теорема синусов: а/sin Ф =2d,
значит а=2d*sin Ф
Также угол при основании равнобедренного треугольника cos Ф = b/2a, откуда
b=2a* cos Ф =2*2d*sin Ф* cos Ф=4d*sin Ф* cos Ф=2d sin 2Ф
радиус круга, вписанного в данный треугольник
r=b/2*√(2a-b)/(2a+b)=
=2d sin 2Ф/2 * √(2*2d sin Ф - 2d sin 2Ф)/(2*2d sin Ф + 2d sin 2Ф)=
=d sin 2Ф *√(2 sin Ф - sin 2Ф)/(2 sin Ф + sin 2Ф)=
=d sin 2Ф *√(2 sin Ф - 2sin Ф cos Ф)/(2 sin Ф + 2 sin Ф cos Ф)=
=d sin 2Ф *√(1- cos Ф)/(1+ cos Ф)=d sin 2Ф *√tg² (Ф/2)=d sin 2Ф *tg (Ф/2)=
=d*2sin Ф cosФ*(1-cos Ф)/sin Ф=2d*cosФ*(1-cos Ф)
Треугольник АВС - прямоугольный равнобедренный, АВ=ВС=7.
Плоскость (АСС₁А₁) перпендикулярна плоскости АВС.
Проведём А₁К перпендикулярно АС, СМ параллельно А₁К,
СМ перпендикуляр к АС и ВС перпендикуляр к АС, значит угол МСВ- линейный угол двугоранного угла между плоскостями АСС₁А и АВС.
Угол МСВ=90⁰
,
АС перпендикуляр к ВС, АК- проекция АА₁ , по теореме о трех перпендикулярах АА₁ перпендикуляр к ВС.
Значит и СС₁ перпендикуляр в ВС. Четырехугольник ВВ₁С₁С- прямоугольник. Его площадь равна 56. Катет ВС=7, значит боковые ребра призмы 8
7*8=56
Из прямоугольного треугольника АА₁К зная угол А₁АК=45⁰ ( по условию) найдем высоту А₁К=4√2
V=S·H=1/2 АС·ВС·А₁К=1/2·7·7·4√2=98√2 кв ед.