В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Существует ли выпуклый четырёхугольник, углы которого равны 40°, 120°,75°,145°
20

Показать ответ
Ответ:
Nikalime156
Nikalime156
19.05.2022 04:09
1)прямая - линия не имеющая начала и конца 
отрезок-линия имеющая начала и конец 
луч- линия имеющая начала ,но не имеющая конец  
2)  Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.  Пусть ÐАВС и ÐCBD – данные смежные углы . Так как лучи ВА и BD образуют развернутый угол, то ÐАВС+ÐCBD =180°.Теорема доказана.Можно найти величину одного из смежных углов, если известна величина другого угла. Например, ÐАВС =72°, величина смежного ему угла будет равна 180°- 72°=108°.Каждое утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой, а сами рассуждения называются доказательством теоремы. Мы доказали первую теорему о смежных углах.Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.На рисунке 26 углы ÐEOF и ÐAOC, а также углы ÐAOE и ÐCOF – вертикальные. Потому что сторона ОА является продолжением луча OF, а сторона OC является продолжением луча OE и дополняет до прямой.
3) Первый признак равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.Доказательство. Рассмотрим два треугольника ABC и A1B1C1.Пусть в этих треугольниках равны стороны AB и A1B1,BC и B1C1,а угол ABC равен углу A1B1C1.Тогда треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы угол A1B1C1 совпал с углом ABC.При этом можно расположить треугольник A1B1C1 так, чтобы сторона А1В1 совпала со стороной АВ, а сторона B1С1 - со стороной BС. (В случае необходимости вместо треугольника A1B1C1 можно рассматривать равный ему "перевернутый" треугольник, т. е. треугольник, симметричный A1B1C1 относительно произвольной прямой .)
Второй признак равенства треугольниковЕсли сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.Доказательство. Пусть в треугольниках АВС и А 1 В 1 С 1 имеют место равенстваAB= A1B1,ÐBAC = ÐB1A1C1,ÐАВС= ÐА1В1С1.Поступим так же, как и в предыдущем случае. Наложим треугольник А1В1С1 на треугольник АВС так, чтобы совпали стороны AB и A1B1и прилегающие к ним углы.  Как и в предыдущем случае, при необходимости треугольник А1В1С1 можно "перевернуть обратной стороной". 

Тогда треугольники совпадут полностью. Значит, они равны. t Третий признак равенства треугольниковЕсли три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.Доказательство. Пусть для треугольников ABC и A1B1C1
имеют место равенства АВ = А1В1,
ВС = В1С1,
СА = С1А1.
Перенесем треугольник А1В1С1 так, чтобы сторона А1В1 совпала со стороной АВ, при этом должны совпасть вершины A1 и A, B1 и B. 
Рассмотрим две окружности с центрами в A и B и радиусами соответственно AC и BC.
Эти окружности пересекаются в двух симметричных относительно AB точках: C и C2. Значит, точка C1 после переноса указанным образом треугольника A1B1C1 должна совпасть либо с точкой C, либо с точкой C2. 
В обоих случаях это будет означать равенство треугольников ABC и A1B1C1, поскольку треугольники ABC и ABC2 равны (эти треугольники симметричны относительно прямой AB.)
0,0(0 оценок)
Ответ:
MaximVolkov14
MaximVolkov14
19.05.2022 04:09
Пусть параллельные прямые a и bпересечены секущей MN (c). Докажем что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР), параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6.
Теорема о накрест лежащих углах при пересечении параллельных прямых секущей с доказательством
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота