cos A = √(1/25) = 1/5 -------------------------------------------------------------------------------------------------------------
Если решать геометрически, то синус угла А является отношением противолежащего углу А катета BC к гипотенузе AC. Косинусом угла А является отношение прилежащего к углу А катета AB к гипотенузе AC.
Если прилежащий катет относится к гипотенузе как 2√6 : 5, для вычисления синуса и косинуса угла А можно принять длину прилежащего катета = 2√6, а гипотенузу = 5. Т.к. прямоугольный треугольник с иными длинами сторон, но с таким же синусом того же угла будет подобен треугольнику с длиной прилежащего к углу катета = 2√6 и гипотенузой = 5. У подобных треугольников стороны одного пропорциональны сходственным сторонам другого, а их соответствующие углы равны. BC = 2√6 см AC = 5 см
В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²
cos²A = 1 - sin²A
cos²A = 1 - (2√6/5)² = 1 - (24/25) = 25/25 - 24/25 = 1/25
cos A = √(1/25) = 1/5
-------------------------------------------------------------------------------------------------------------
Если решать геометрически, то синус угла А является отношением противолежащего углу А катета BC к гипотенузе AC. Косинусом угла А является отношение прилежащего к углу А катета AB к гипотенузе AC.
Если прилежащий катет относится к гипотенузе как 2√6 : 5, для вычисления синуса и косинуса угла А можно принять длину прилежащего катета = 2√6, а гипотенузу = 5. Т.к. прямоугольный треугольник с иными длинами сторон, но с таким же синусом того же угла будет подобен треугольнику с длиной прилежащего к углу катета = 2√6 и гипотенузой = 5. У подобных треугольников стороны одного пропорциональны сходственным сторонам другого, а их соответствующие углы равны.
BC = 2√6 см
AC = 5 см
по теореме Пифагора
BC² + AB² = AC²
(2√6)² + AB² = 5²
24 + AB² = 25
AB² = 1
AB = 1 (cм)
cos A = AB / AC
cos A = 1/5