Боковая поверхность пирамиды состоит из 4 равнобедренных треугольников, площади которых попарно равны Найдём высоту треугольника с основанием 6 см , по теореме Пифагора h=√(13²-3³)=√160см , а площадь этого треугольника 1/2·6·√160=3√160=12√10 см² и таких треугольников боковая поверхность содержит 2, значит их площадь 24√10 см² Найдём высоту треугольника с основанием 8, так же по теореме Пифагора H=√(13²-4²)=√153=3√17 см, его площадь равна 1/2·8·3√17=12√17см² и таких треугольника тоже 2 и их площадь равна 24√17 см² Sбок=24√10+24√17=24(√10+√17) см² ответ:24(√10+√17) см²
Рассмотрим линейную функцию y = 3 ∙ x, определенную на числовом отрезке [−2; 3]. Эта функция является прямой пропорциональностью с угловым коэффициентом k = 3, графиком которой является прямая линия, проходящая через начало координат. Так как k < 0, то функция y = − 3 ∙ x является убывающей, то есть большему значению аргумента соответствует меньшее значение функции:
х = 3 – наибольшее значение аргумента на числовом отрезке [−2; 3];
y = 3 ∙ 3 = 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3; 3].
ответ: 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3
Найдём высоту треугольника с основанием 6 см , по теореме Пифагора
h=√(13²-3³)=√160см , а площадь этого треугольника 1/2·6·√160=3√160=12√10 см² и таких треугольников боковая поверхность содержит 2, значит их площадь 24√10 см²
Найдём высоту треугольника с основанием 8, так же по теореме Пифагора
H=√(13²-4²)=√153=3√17 см, его площадь равна 1/2·8·3√17=12√17см² и таких треугольника тоже 2 и их площадь равна 24√17 см²
Sбок=24√10+24√17=24(√10+√17) см²
ответ:24(√10+√17) см²
Объяснение:
Рассмотрим линейную функцию y = 3 ∙ x, определенную на числовом отрезке [−2; 3]. Эта функция является прямой пропорциональностью с угловым коэффициентом k = 3, графиком которой является прямая линия, проходящая через начало координат. Так как k < 0, то функция y = − 3 ∙ x является убывающей, то есть большему значению аргумента соответствует меньшее значение функции:
х = 3 – наибольшее значение аргумента на числовом отрезке [−2; 3];
y = 3 ∙ 3 = 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3; 3].
ответ: 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3