Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a,
то стороны исходного треугольника будут такие
(a + r, b + r, 35)
стороны меньшего треугольника
(a, r, 15)
стороны большего
(r, b, 20)
и все эти три треугольника подобны между собой.
отсюда a/r = 15/20 = 3/4;
то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5)
То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4.
То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20)
Исходный треугольник имеет стороны 21, 28, 35, его площадь 294;
длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
-б=(2;4;-2)
1/2а-б=1/2а+(-б)=(5;3;-1)
2)2б=(-4;-8;4)
2б+а=(2;-10;6)
|2б+а|=4+100+36(и все это под корнем)=
140(под корнем)=4•35(под корнем)=2корень из 35
3)cosL=a•b/|a|•|b|
|a|=36+4+4(под корнем)=корень из 44
|b|=4+16+4(под корнем)=корень из 24
А•б=6•(-2)+(-2)•(-4)+2•2=-12+8+5=0
СоsL1=0/корень 44•корень 24=0
L1=90 градусов
L2
A-b=(6-(-2));-2-(-4);2-2)=(8;2;0)
A+b=(6+(-2);(-2)+(-4);;2+2)=(4;-6;4)
CosL2=(a-b)•(a+b)/|a-b|•|a+b|
(A-b)•(a+n)=8•4+2•(-6)+0•4=32-12=20
|a-b|=64+16(под корнем)=корень из 80
|а+б|=16+36+16(под корнем)=32+36(под корнем)=корень из 68
СоsL2=20/80(корень )•69(корень)=5(корень)•5(корень)/5(корень)•2•17(корень)=5(корень):2корень из 17
L2=arccos 5(корень)/2 корень 17