Тік бұрышты параллелепипедтің үш өлшемі 3 см, 4 см және 5 см тең. Көлемін табыңыз. Три размеры прямоугольного параллелепипеда равны 3 см, 4 см и 5 см. Найдите объем.
Построение сечения: Назовем искомую плоскость MNK . Плоскости ABC и A1B1C1 параллельны и пересечены плоскостью , следовательно, линии пересечения параллельны. Значит, пересекает А1В1С1 по прямой КF, параллельной MN. Значит, F - середина А1В1. Осталось соединить KF, FM, MN, NK. Искомое сечение - FKNM. Доказательство: В треугольнике ABD MN-средняя линия, MN || BD. Т.к MN лежит в плоскости сечения MNK, а BD параллельна прямой MN, лежащей в плоскости сечения, ВD параллельна плоскости MNK, что и требовалось доказать.
В треугольнике АВС углы А и В равны по 45°, значит треугольник равнобедренный, АС = СВ. ∠АСВ = 180° - (∠А + ∠В) = 180° - 90° =90°
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки к этой прямой. Проведем СН⊥АВ. СН - искомое расстояние. Тогда АН - проекция отрезка АС на прямую АВ.
В равнобедренном треугольнике высота, проведенная к основанию, является и медианой: АН = НВ = АВ/2 = 9,5 см
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине: СН = АВ/2 = 9,5 см
∠АСВ = 180° - (∠А + ∠В) = 180° - 90° =90°
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки к этой прямой.
Проведем СН⊥АВ.
СН - искомое расстояние.
Тогда АН - проекция отрезка АС на прямую АВ.
В равнобедренном треугольнике высота, проведенная к основанию, является и медианой:
АН = НВ = АВ/2 = 9,5 см
В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине:
СН = АВ/2 = 9,5 см