Тіктөртбұрыштың диагональдары 20^° -пен қиылысады. Тіктөртбұырыштың диагоналі оның қабырғаларымен қандай бұрыш жасайтынын табыңыз. Тіктөртбұрыштың диагоналі оның бұрышын 2:7 қатынасындай бөледі. Тіктөртбұрыштың диагональдары қиылысқанда қандай бұрыштар пайда болады.
Тіктөртбұрыштың биссектрисасы оның қабырғасын 5 см теңдей екі бөлікке бөледі. Тіктөртбұрыштың периметрін табыңыз.
ABCD тіктөртбұрышының ∠A –нан биссетриса жүргізілген, ол ВС қабырғасын М нүктесінде ВМ : МС = 2 : 3 қатынасында бөледі. ABCD периметрі 56 см-ге тең болса, ВС қабырғасын табыңыз.
Тіктөртбұрыштың диагональдары қиылысқанда пайда болған бұрыштардың бірі 120^°, ал тіктөртбұрыштың кіші қабырғасы 9 см. Тіктөртбұрыштың диагоналін табыңыз.
ABCD тіктөртбұрышының АС = 12 см, ∠ADB=15^°. А төбесінен DB түзуіне лейінгі арақашықтықты табыңыз.
Шеңбердің екі диаметрінің ұштары тіктөртбұрыштың төбелері болатын ділелдеңіз.
Тіктөртбұрыштың периметрі 36 см-ге тең. Тіктөртбұрыштың қабырғаларын табыңыз.
ответ: 90° и 36°
Объяснение: Очевидно, что для составления из двух равнобедренных треугольников другого, нужно:
чтобы их боковые стороны были равны; чтобы угол одного при составлении дополнял до развернутого угла угол другого (В противном случае получится четырехугольник).Возможны два варианта решения.
1. Такой треугольник можно составить из равных равнобедренных прямоугольных треугольников Их острые углы равны 45°, и угол между боковым сторонами нового треугольника будет 90°. ( см. рисунок вложения)
2. Обозначим исходные треугольники АВЕ и АСЕ ( АЕ=ВЕ и АЕ=АС). В новом треугольнике АВС АВ=ВС, углы при АС равны. Угол при С общий для обоих треугольников. Треугольники АСЕ и АВС подобны по равным углам при АС. поэтому угол САЕ=углу АВС.
Примем угол АВЕ=ВАЕ= х, тогда угол ВЕА=180°-2х.
=> Смежный с ним угол АЕС=2х, равный ему угол ЕСА=АЕС=2х. В ∆ АВС сумма углов В+А+С=х+2х+2х=180°
5х=180° => х=180°:5=36°
Если катеты равны AB=6 и BC=8, то гипотенуза АС = 10.
Так как боковые ребра равны 13, то вершина пирамиды проецируется в середину гипотенузы.
Поместим пирамиду в систему координат: В - начало, ВА по оси Ох, ВС по оси Оу.
Середина ВС это точка К, середина АД - точка М.
Высота Н пирамиды равна:
Н = √13² - 5²) = √(169 - 25) = 12.
Находим координаты концов заданных отрезков.
К(0; 4; 0), М(4,5; 2;6).
С(0; 8; 0), Д(3;4; 12).
Векторы: CD = √((xD-xC)²+(yD-yC)²+(zD-zC)²) = 3 -4 12 169 13
KM = √((xM-xK)²+(yM-yK)²+(zM-zK)²) = 4,5 -2 6 60,25 7,762087348 .
Скалярное произведение векторов равно:
13,5 8 72 Скал_про = 93,5
cos α = 93,5/(13*√60.25) = 0,9266 .
Угол равен 0,3855 радиан или 22,09 градусов.