Тільки відповідь!! Прямокутний трикутник, гіпотенуза якого дорівнює 6 см, а один із го- стрих кутів дорівнює 30", обертається навколо більшого катета. Знайдіть радіус основи конуса, утвореного внаслідок цього обертання.
Сечение цилиндра, параллельное оси - прямоугольник АВСD. Из центра О верхнего основания цилиндра проведем перпендикуляр ОН к хорде АВ. ОН по свойству перпендикуляра из центра к хорде делит АВ пополам. Треугольник АНО прямоугольный с острыми углами АОН=120º:2=60º и ОАН=90º-60º=30º. АН=АО*sin 60°=3√3 AB=2 AH=6√3 Образующую АD цилиндра найдем из прямоугольного треугольника АDС, где гипотенуза АС- диагональ сечения, катет АD - образующая цилиндра, катет DС - хорда=основание сечения. СD=АВ АD=СD:ctg 60=6√3*√3=18 --------- Диагональ сечения и ось цилиндра не параллельны и не пересекаются. АС и ОО1 - скрещивающиеся прямые. Угол между скрещивающимися прямыми - это угол между параллельными им прямыми, лежащими в одной плоскости. Проведем из Н прямую НМ параллельно ОО1. АС и НМ пересекаются в точке М1. Треугольник МСМ1= прямоугольный, угол МСМ1=60º, угол СМ1М - 30º Угол СМ1М - угол между диагональю сечения и осью цилиндра.
Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π
Из центра О верхнего основания цилиндра проведем перпендикуляр ОН к хорде АВ. ОН по свойству перпендикуляра из центра к хорде делит АВ пополам.
Треугольник АНО прямоугольный с острыми углами АОН=120º:2=60º и ОАН=90º-60º=30º.
АН=АО*sin 60°=3√3
AB=2 AH=6√3
Образующую АD цилиндра найдем из прямоугольного треугольника АDС, где гипотенуза АС- диагональ сечения, катет АD - образующая цилиндра, катет DС - хорда=основание сечения.
СD=АВ
АD=СD:ctg 60=6√3*√3=18
---------
Диагональ сечения и ось цилиндра не параллельны и не пересекаются.
АС и ОО1 - скрещивающиеся прямые.
Угол между скрещивающимися прямыми - это угол между параллельными им прямыми, лежащими в одной плоскости.
Проведем из Н прямую НМ параллельно ОО1.
АС и НМ пересекаются в точке М1.
Треугольник МСМ1= прямоугольный, угол МСМ1=60º, угол СМ1М - 30º
Угол СМ1М - угол между диагональю сечения и осью цилиндра.
Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π