20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.
E, F, G - точки касания на сторонах AC, AB, BC
Отрезки касательных из одной точки равны.
AE=AF, BF=BG, CG=CE
p =AE+BG+CG =AE+BC (полупериметр)
Расстояние от точки до прямой измеряется длиной перпендикуляра.
Радиус в точку касания перпендикулярен касательной.
OE=OG =r =7
AE=√(AO^2 -OE^2) =24 (теорема Пифагора)
S(ABC) =pr =(24+BC)*7
Высота GH - расстояние между параллельными BC и AD - сумма расстояний от точки O до этих прямых.
GH =7+19 =26
S(ABCD) =BC*GH =BC*26
△ABC=△ABD (по трем сторонам) => S(ABC) =S(ABCD)/2
(24+BC)*7 = BC*26/2 => BC=28
S(ABCD) =28*26 =728
20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.
E, F, G - точки касания на сторонах AC, AB, BC
Отрезки касательных из одной точки равны.
AE=AF, BF=BG, CG=CE
p =AE+BG+CG =AE+BC (полупериметр)
Расстояние от точки до прямой измеряется длиной перпендикуляра.
Радиус в точку касания перпендикулярен касательной.
OE=OG =r =7
AE=√(AO^2 -OE^2) =24 (теорема Пифагора)
S(ABC) =pr =(24+BC)*7
Высота GH - расстояние между параллельными BC и AD - сумма расстояний от точки O до этих прямых.
GH =7+19 =26
S(ABCD) =BC*GH =BC*26
△ABC=△ABD (по трем сторонам) => S(ABC) =S(ABCD)/2
(24+BC)*7 = BC*26/2 => BC=28
S(ABCD) =28*26 =728