Tabc - правильная 4-уг. пирамида. точка p лежит на прямой td. прямая n проходит через точку p и параллельна прямой ad. докажите, что прямые bc и n параллельны
Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
ответ: 192 см
Объяснение:
ВН - высота равнобедренного треугольника, проведенная к основанию, значит ВН - медиана,
АН = НС = ВН/2 = 15 см
ΔАВН: ∠АНВ = 90°,
по теореме Пифагора
АВ = √(АН² + ВН²) = √(15² + 8²) = √(225 + 64) = √289 = 17 см
Pabc = АВ + АС + ВС = 17 + 30 + 17 = 64 см
__________________________________
Углы при основании равнобедренного треугольника равны, тогда
∠А = ∠С = (180° - ∠В)/2
∠А₁ = ∠С₁ = (180° - ∠В₁)/2
По условию ∠В = ∠В₁, значит и ∠А = ∠А₁, ⇒
ΔАВС ~ ΔА₁В₁С₁ по двум углам.
см
Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Что и требовалось доказать.